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Preface

In the spring of 1965, while the author was engaged in a structural
analysis of a Yami genealogy recorded on Botel Tobago, he had the oppor-
tunity of making the acquaintance of the linguist John H, T. Harvey. A
joint exploration of genealogical space was thus launched, the initial result
being the construction of a numerical kinship notation system amenable to
mathematical operations and yielding algebraic multi-value groups (Harvey
and Liu 1967). With this, a new approach to the mathematical analysis of
kinship structure was fortuitously inaugurated. For the past twenty years,
it has been the author’s self-appointed task to further explore this new
territory. He hopes that publication of this book will open up this new
area of anthropological inquiry and stimulate others to explore paths he
has neglected.

Just as new building materials require new tools, so new research pro-
grams require new methods. In developing his method, the author first
expanded a genderless notation system to include gender, then developed a
numerical notation for coding segmentary space (Lin 1969; 1972). Applying
these tools to the analysis of such systems as Murngin, Kokata, and Crow-
Omaha, he then discovered what he now prefers to call “box theory”, which
involves in essence the use of patri- and matri-generators to depict the kin
diagrams employed in this book and later known as Cayley diagram to the
mathematician (Liu 1967; 1968b; 1969; 1970; 1973a, b, ¢; 1976; 1977; 1978:
1979). In all this he has come to realize the fruitfulness of studying kinship
space, the feasibility of using mathematical language for analyzing kinship
structures and the predicability of structural transformations.

In 1973 the author had the good fortune of meeting the mathematician
Sydney H. Gould who was then living in Nankang, Taipei. This meeting
opened a new chapter in his research program. From 1973 to 1982, when

!



i PREFACE

Mr. Gould left Nankang for his home country, we cooperated closely in
re-examining previously proposed notation systems and their mathematical
properties (Gould and Liu 1976; Gould 1978). At this stage of our work
we discovered that the mathematical concept “equivalence rules” developed
by the Yale school of kinship semantics (Lounsbury 1956; 1964a, b: Scheffler
and Lounsbury 1971; Scheffler 1978) was compatible with box theory and
helped determine the number of boxes and their relationship. Consequently,
with a new (X, Y)-notation system, we attempted an amalgamation of
equivalence rules with the theory of group relations developed in our pre-
vious papers. (The results was a paper drafted in 1978 and published in
1984.) The results of this work are applied in this volume, enabling us to
depict kinship structure in algebraic and geometric forms. Our goal through-
out has been to bring to kinship studies more rigorous mathematical for-
mulation and thus refinement of its theoretical basis.

1985 marked the 30th anniversary of the founding of the Institute of
Ethnology and also happened to be the year when the Institute moved to
its new building. For this occasion it was proposed that a special com-
memorative publication be issued, and the author chose to present as his
contribution this monograph, which represents the culmination and synthesis
of 20 years of work at the Institute,

If the theoretical structure of this monograph has any merit and its
argument any validity, they are in large part the result of an intensive
long-term collaboration with Mr. Gould. His contribution to this monograph
is inestimable. It must be pointed out, however, that Mr. Gould has delved
deeply into the literature on kinship and has developed his own ideas on
the subject, which will be presented in a publication to be entitled “Kinship,
Marriage and Mathematics.” I am not in complete agreement with Mr.
Gould’s analysis but welcome it nonetheless, confident that our differences
will stimulate discussion and thus serve our common interest in promoting
development of the field.

The two appended papers are closely related to the argument of the
main text. All of them have been previously published but in journals not
easily accessible to the reader-at-large. They are reprinted here to help the
reader understand the process by which the author gradually developed his



PREFACE iii

theoretical views. The first paper was the outcome of joint research by
Mr. Harvey and the author and was first published in the Bulletin of the
Institute of Ethnology, No. 23 (1967). The second paper was the first
publication based upon joint research Mr. Gould and the author and first
appeared in the Bulletin of Visiting Scholars Association, Harvard-Yenching
Institute, Harvard University, China Branch, Vol. 13 (1976). They serve to
show the foundation for the author’s current mathematical study of kinship.

The author would like to take this opportunity to express his profound
gratitude to Messrs. Harvey and Gould for their assistance over the years.
I am confident that thieir contribution to kinship mathematics will be hailed
by anthropologists. The ninety some diagrams contained in this monograph
are indispensable to the articulation of arguments, presented therein and
the author gratefully thanks Miss J. C. Tai for her excellent work in this
regard.

P. H. L.
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CHAPTER 1

Preliminary Mathematical Concepts

Relation: an aspect ... of two or more things
taken together
Aspect: position in relation to
— Webster

Another topic that needs fuller treatment...has
to do with fundamental postulates, the ultimate
primitives, and the logical structure of kinship
reckoning as a mathematical system.

— Lounsbury

1.1 Kinship stady as a science. Science consists of concise descriptions,
called general laws, of the recurrences of phenomena. In kinship study the
phenomena are kinterms like jather, brother, uncle in English or bapa, gawel,
gatu, w&ku in the Murngin language in northwestern Australia, and the
recurrences take the following form. In English the kinterm wuncle for
father’s brother recurs for mother’s brother, but in Murngin bapa for father’s
brother recurs for father and not for mother’s brother (gawel). In English
the term son applied to a male child by his father recurs as the term
applied to the same child by his mother, but in Murngin gatu (father’s
child) recurs for brother’s child (English nephew), and not for mother’s
child (waku). Then the general laws take the form of “equivalence rules”
(see e. g. 4.6), by which the recurrences are concisely described.

1.2 Social importance of kinterms. In his children’s eyes a Murngin
father, F=bapa, is on much the same social footing as the father’s brothers,
FB also=bapa, since all of them live together around the same water-hole,
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but his mother’s brothers (gawel) are on a different footing, since they live
around a distant water-hole, the pre-marriage residence of his mother; and
in general the multifarious variety of kinterm recurrences around the world
reflects differences of social behavior. An American male does not apply
the same Kkinterm to his sons as to his brother’s sons and does not treat
them in the same way, but a Murngin male calls them all garz and treats
them pretty much alike. Kinship® systems determine legal and moral
obligations; they are the earliest form of organized human grouping, the
prototype of all social and political organizations.

Establishment of proper kinterms is often a matter of extreme social
importance. If two unacquainted aboriginal males encounter each other,
they begin at once to discuss their various relatives in order to establish
between themselves a linking chain that will determine the kinterm by
which each is to address the other, and if no such chain can be found, it
becomes the duty of each to kill the other. As Radcliffe-Brown [1913:
151] writes, in an essay describing the Kariera tribe on the west coast of
Australia:

... when a stranger comes to a camp ... he remains at some distance.
A few of the older men, after a while, approach him ... and ask “Who is
your maeli?” (father’s father). The discussion proceeds on genealogical lines
until all parties are satisfied of the exact relation of the stranger to each of
the natives present in the camp. ...In one case, after a long discussion,
they were still unable to discover any traceable relationship between my
servant and the men of the camp. That night my “boy” refused to sleep in
the native camp, as was his usual custom, and on talking to him I found
that he was frightened. These men were not his relatives, and they were
therefore his enemies. This represents the real feelings of the natives on the
matter. If I am a blackfellow and meet another blackfellow, that other
must be either my relative or my enemy. If he is my enemy I shall take
the first opportunity of killing him, for fear he will kill me. This, before
the white man came, was the aboriginal view of one's duty towards one's
neighbour.

1.3 The formalist approach. Recurrences in kinship terminology are
the subject-matter of “kinship in the narrower sense”, i.e. “formalist”
kinship theory, and their correlation with social behavior and organization,
or with ecology, history and the like, is “"kinship in the wider sense”,
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functionalist, historical, etc., an intricate and exceedingly difficult subject
that has engaged the attention of anthropologists for a hundred years.
Although for various reasons we make an occasional foray into this wider
terrain, in the present book our attention is concentrated on the purely
formal task of describing Kinterm recurrences; so that in particular, our
discussion of marriage will be motivated almost entirely by its influence on
terminology. We feel confident that advances in this simpler field will prove
helpful for subsequent anthropological studies of many kinds.

1.4 Morgan’s “Systems of Consanguinity and Affinity...”. Since we
are interested throughout, not in the kinterms themselves, but only in their
patterns of recurrence, two kinship systems with the same pattern but in
different native languages are regarded as being the same system. The fact
that two systems, one say in eastern Peru (Piro, see 11.8) and the other in
southern India (Tamil, see 10.1), can be the same system in spite of wide
geographical separation and mutually unintelligible languages is one of the
most fascinating aspects of our subject, a fascination deeply felt by the
originator of modern kinship theory, Lewis Henry Morgan, a railroad lawyer
in New York State, whose epoch-making work “Systems of Consanguinity and
Affinity of the Human Family” [Morgan 1870] begins as follows:

As far back as the year 1846, ...I found among them [the Seneca-
Iroquois in northeastern USAJ], in daily use, a system of relationship for
the designation and classification of kindred, both unique and extraordinary
in its character, and wholly unlike any with which we are familiar. ... In
the ... summer [of 1858], while on the south shore of Lake Superior, I as-
certained the system of the Ojibwa Indians; and ... with some degree of
surprise ... found among them the same elaborate and complicated systemn
which then existed among the Iroquois. Every term of relationship was
radically different from the corresponding term in the Iroquois: but the
classification of kindred was the same. It was manifest that the two systems
were identical ...I determined to follow up the subject...among the
American aborigines, ...upon the Eastern Continent, and among the islands
of the Pacific.

1.5 Relations as structures. Although Morgan was not a mathematician,
his decision to investigate what was common to two superficially different
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systems is characteristic of all mathematical activity. In the process of
abstracting for further study those qualitics of a given set of systems that
arc common to all of them, the mathematician must often neglect specific
features of great interest to anthropologists, e, g. warfare, political organi-
zation, or methods of obtaining food. So the complaint is sometimes made
that mathematics is too abstract to be helpful.

Certainly, if we wish to retain the advantages of mathematics, we must
state some definitions, e. g. of the fundamental concept of a “relation”, in a
mathematical way. Circular definitions of the kind quoted above from
Webster are useful in daily life because of the high probability that some-
where in the circle the reader will find a familiar idea, but in mathematics
they are avoided, or at least an attempt is made to avoid them, by leaving
one concept altogether undefined, namely a “set of elements”, and defining
all others in terms of that one concept alone.

With Webster’s definition of “relation” compare the following mathe-
matical definition: “A relation on a given set U of elements a4, b, c,...is
a set of pairs (a, b), (¢, d),...of the elements of U.” In mathematics
the relation is that set of pairs which in everyday language would be
said to exemplify it. In particular, the relation indicated by a kinterm
like father or mother, or like bupa or arndi is a certain set of pairs of
persons in the aggregate U of persons that use the kinterm. The first
member of the pair is usually called ego or the speaker, and the second
member is alter or the referent; e.g. in the father relation alter is the
father of ego. ‘

More generally, if U is a set of elements of any kind, any set of sets
—e. g. any set ol pairs—or any set of sets of sets etc. of elements of U is
called a structure on U, and U is called the underlying set, or the set of
ultimate primitives, for the structure. Every mathematical system or concept,
in particular every relation, is a structure on some underlying set.

1. 6 Kinship systems as partitions. Of equal importance with relations
in kinship study is the concept of “partition”, defined as follows, A partition
of U is the structure consisting of a set of subsets of U such that every
element of U belongs to exactly one of the subsets; i.e. a partition is a set
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of exhaustive, mutually exclusive subsets. In this case the subsets are usually
called classes or equivalence classes, since any two eclements in the same
class are regarded as being "equivalent” to each other in some sense deter-
mined by the naturc of the partition. For example, if the set of all integers
is partitioned into two classes, one containing the even integers and the
other the odd, we say that any two even integers, or any two odd, are
equivalent to each other but an even integer is inequivalent to an odd; in
symbols, 2~4, 3~5, 2+3 etc.,, where the symbol ~ means “is equivalent
to”, and as customary a slash through a symbol negates its meaning.

As another example, every kinship terminology partitions the set of
personal relations in its own particular way by assigning two relations to
the same class if the given terminology uses the same kinterm for both or
else has no kinterm for either. Thus in English FB~MB since they are
both in the uncle class but FB+F since F=jfather goes by a different
kinterm from FB; and WBW (wife’s brother’s wife) ~HZH (husband’s sister’s
husband) since English has no kinterm for either of them. In Murngin, on
the other hand, FB (bapa) +MB (gawel), but FB~F since both are in the
bapa class; and WBW (mari) +HZH (kutara).

1.7 Genealogical space. A structure, call it 5, consisting of the under-
lying set U itself and one or more structures on U, is called a space, in
generalization of the three-dimensional space of everyday experience, which
may be regarded as a set of “undefined elements” or “ultimate primitives”
called “points”, together with two structures called “lines” and “planes”:
i.e. a line is a set of points and a plane is a set of lines. Then a genea-
logical space is a space J=(U; A4, S, P) having three (non-empty) structures
A=age-distinction, S=sex-distinction, and P=parenthood with the following
properties, i. e. satisfying the following axioms or postulates.

Axiom 0: The set U has finitely many elements, called persons.

Axiom 1: The age-distinction 4 is a relation on U, i.e. a set of pairs of
persons, with the property that the entire set of persons in U
can be arranged in a sequence a,, a@;, -+, @,-; in such a way
that if' (a;, a;) is in the relation A, then @, precedes a, in the
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sequence and conversely. If the pair (a,, a,) is in A4, we say
that a, is younger than a, and &, is older than a,.

Axiom 2: The sex-distinction § is a partition of U into two classes, one
called male and denoted by ., the other called female and
denoted by ¢.

Axiom 3: The parenthood relation P is a subset of the age-distinction A,
If (ay a;) is in P, we say that @, is a parent of a,, and 4, is a
child of a;,, Thus every child is younger than its parent.

Axiom 4: There exist two persons, called ultimate ancestors, one male
denoted by g, the other female denoted by ¢,, who have no
parent in U. All other persons have one male parent, called
father, and one female parent, called mother.

In a more complete treatment of kinship terminology it would be neces-
sary to add another axiom, distinguishing dead persons from living, just
as Axiom 2 distinguishes male from female, since in some kinship systems
the term applied by ego to alter changes after the death of a connecting
relative; e. g. in the Karok tribe in California grandfather (=FF) is aric
if ego’s father is still alive and otherwise aticvaci. But for brevity we
have omitted all reference to kinterms dependent on “decedence”, since
they usually appear to be “excrescences which have grown on the various
terminologies rather than integral parts of each” [Gifford 1922: 258].

1.8 Style of the book. In a formal mathematical text we would now
proceed with definitions, theorems and proofs in strict military tempo; e. g.

Definition 1. A genealogical space is also called a race.
Theorem 1. A race contains at least three persons.

Proof. If U contained only g, and ¢,, the parent-relation P would
be empty.

Theorem 2. A race may consist of only three persons,

Proof. A set U consisting of p,, ¢, and one common child satis-

fies all the axioms.
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But in fact we follow a more relaxed, conversational style, inserting
non-mathematical remarks wherever they seem helpful. Here, for example,
we might point out that in everyday speech the concept of a race is so
vague as to have been one of the causes of the Second World War, so that
in sharpeni‘ng up concepts of this sort for precise mathematical use it is
often convenient to admit cases that at first sight may seem absurd. For
example, the "Aryan” race, or the Anglo-Saxon race, includes many more
than three persons and no practicing anthropologist will encounter a race
that consists of only three. Nevertheless our inclusion of such a possibility
is harmless and convenient, and similar statements hold for many other
mathematical concepts.

As another informal remark, let us point out that our model of a
genealogical space, or race, includes the assumption, common in primitive
and nonprimitive societies, that the entire race is descended from exactly
two ultimate parents, who may be eponymous, like Hellen for the Greeks
(Hellenes) or may represent the abstract concept of man and woman, like
Adam (man) and Eve (life), or the abstract concept of fertility, like a tree
or a seed. As we shall see in 2. 12, a race can be divided into its mythical
part, which may be empty, and its non-mythical part, called a tribe.

Throughout the book we proceed in the same manner, keeping the
motto constantly in mind: “no mathematical statement without an anthro-
pological example.”
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CHAPTER 1I

Basic Anthropological Concepts

2.1 The traditional notation. Our use of the traditional notation, with
some additions, is as follows:

F =father, M =mother, P =parent,
S =son, D =daughter, C =child,
B =brother, Z =sister, J =sibling (half or full)
cf. Jack and Jill,
H =husband, W=wife, V =spouse
cf. the Latin  VIR=husband,
VXOR =wife,
p=male, d=female, a=p Or ¢,
€. g. pZ=male speaker’s sister,
¢FB=female speaker’s father’s brother,
e=elder, y=younger, a=e or y,

g="greats”, the first one being changed to "grand” before F, M, §, D;
e. 8. g*F=greatgrandfather,
Bg*S=greatgreatnephew (i. e. brother’s greatgrandson),
=same-sex sibling: ego is of the same sex as ego’s sibling,
J =opposite-sex sibling: ego is of opposite sex from ego’s sibling,
PjC=parallel cousin (abbreviated to prco): ego’s parent is a same-sex
sibling of alter’s parent,

4 =iy

PIC=cross cousin (abbreviated to crco): ego’s parent is an opposite-sex
sibling of alter’s parent,

JC=parallel nephew or niece: ego is a same-sex sibling of alter’s parent,
JC=cross nephew or niece: €go is an opposite-sex sibling of alter’s parent.

9
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A repeated diacritical mark * or ° indicates “same sex”, whereas a pair
of contrasting marks indicates opposite sex; thus &PJ€=cross cousin of
same sex as ego; and the mark ~ used alone, i.e. without * or another ~,
indicates “of the same sex” as ego: e.g. J and J above. A vertical slash
separates male referent on the left from female referent on the right; e, g.,
we write B | Z for “brother and sister”. Also we use the lower-case letters
fim, p, b, 2z, j, 5, d, ¢, h, w, v to denote the kinterms associated with the
relatives denoted by the corresponding upper-case letters. Thus FB denotes
an actual relative, independently of any native language, but fb denotes the
kinterm for FB in a particular language; e.g. fb=mb (uncle) in English,
but fb#mb in Seneca (hanih+ haksoneh; 9.1).

2.2 The “actual” and “classificatory” convention. In a book about
non-English kinterms written in the English language it is usually impossible
to find one English word that will exactly express the meaning of any one
foreign word, e. g. the Murngin kinterm bapa. Since a Murngin speaker
applies this kinterm to an unlimited number of relatives F, FB, FFBS,
FFFBSS etc., it cannot be completely translated into English except by an
infinitely long phrase like "father and father’s brother and father’s father’s
brother’s son and...”. But the single word father can serve as a translation
if we introduce a suitable convention.

We first note that any terminological distinction expressible in English
can be expressed in any other language. In particular, the English distinc-
tions between F (father), FB (uncle), FFBS (first-cousin-once-removed) etc.
are expressed in Murngin by phrases which a native with a fair command
of English will translate as "my close father” (F), "my little bit faraway
father” (FB), "my faraway father” (FFBS) etc. For our purposes it will
be sufficient to distinguish between the “close” and “non-close” fathers as
follows.

Among those relatives to whom ego applies a given kinterm, say bapa,
the ones to whom ego is connected by the shortest sequence of letters, in
this case the one letter F, are ego’s “actual” or “own” or “primary” or
“true” relatives and the others are “derivative” or “extended” or “secondary”
or “classificatory”. Although all these adjectives, and still others, occur in
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the literature, we shall usually choose “actual” and “classificatory” and may
then translate the Murngin term bapa by father, with the understanding that
any non-English kinterm without the modifier “actual” or “classificatory”
refers to both kinds of relatives. For example, a statement like “the
Murngin prescribe MBD-marriage” does not mean that a Murngin male is
necessarily expected to marry an actual MBD, although in fact he often
does, but only that he should marry an MBD, actual or classificatory.

For the Murngin kinterm bapa there is only one shortest sequence of
letters, namely F, but consider the Seneca kinterm akyase applied to the
unlimitedly many relatives

FZC, MBC, FFBDC, FMZDC, MFBSC, MMZSC, ...

Here there are two shortest sequences FZC, MBC, representing ego’s cross-
cousins pjc. So we say that these two closest akyase are ego’s “actual
cross-cousins”, and the others are “classificatory cross-cousins”. If we agree,
as is common in computer science and elsewhere, to let any sequence of
letters be called a word, then the “words” f; mbd, pjec become reasonably
satisfactory translations of bapa, galle and akyase respectively.

2.3 Glosses. More generally, we adopt the following method of
“glossing” native kinterms, i.e. of translating the chief part of their meaning
into an artificial langnage that approximates English. Let us illustrate with
the kinterm saplo, which is applied by the Piro tribe in eastern Peru (cf.
11. 8) not only to FZ but to FFBD, FMZD, FFBSD etc. Since FZ is the
only shortest sequence among them, our English gloss for the Piro term
saplo is just fz. But fz will not serve as a gloss for the English kinterm
aunt, since ego’s MZ is just as close as ego’s FZ, so that the gloss for the
English aunt is pz (parent’s sister). For a kinterm in any native language,
including English, the gloss will consist of a sequence of lower-case letters
formed from the initial letters of the English words representing the closest
relatives.

Since our whole purpose is to preserve exactly those recurrences that
are found in the native language, every native kinterm must be glossed in
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exactly the same way wherever it occurs and distinct kinterms must receive
distinct glosses. For example, in Seneca the term akyase includes all four
cross-cousins FZS, FZD, MBS, MBD, so that we must gloss akyase by pic=
parent’s cross-sibling’s child. But the Piro terms anuru | meknaxiro distinguish
the sex of these cousins and must therefore be glossed by Afs | pid (male
cross-cousin | female cross-cousin).

2.4 Social parenthood; society. When we speak of ego’s father, we
do not necessarily mean ego’s biological father, who may be unknown, but
rather his “social” or “jural” father, namely the one whom ego calls father,
and who is recognized as ego’s father in the social and jural conduct of
the tribe. Thus ego’s father is usually that male person, whether biological
father or not, who has nurtured ego during ego’s early life. An ego, male
or female, may possibly have several adoptive fathers in succession. For
example, in tribes with prescribed marriage, if no suitable female
is available for some young man, an older relative may conventionally
“adopt” a daughter in order to bring her into the right relationship with
her suitor. But in all such cases we recognize only one father. A mathe-
maticization of kinship without Axiom 4 (1.7) would be undesirably
complex.

We make the same convention regarding mothers and define a society
S as a finite set of persons, living or dead, that includes at least one father-
mother-child triad and includes either both the parents or else neither parent
of every person in S.

2.5 Paternity among the Nayars. In the preceding section we have
excluded the possibility that ego has more than one actual father. On the
other hand (again see Axiom 4) we do not wish everyone to be without a
father at all, as is sometimes stated to be the case with the Nayars on the
Malabar Coast in southern India. For example, Leach [1955] wriles:

The notion of fatherhood is lacking. The child uses a term of address
meaning “lord” or “leader” towards all its mother’s lovers, but the use of
this term does not carry with it any connotation of paternity, either legal
or biological.
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On the other hand, Gough [1959] writes as follows about the state of
affairs before the British assumed government in 1792:

There is some uncertainty as to the number of visiting husbands a
woman might have...since Nayar women vied with each other. ...A
husband visited his wife after supper at night and left before breakfast next
morning. He placed his weapons at the door of his wife’s room and if
others came later they were free to sleep on the verandah of the woman's
house. Either party to a union might terminate it at any time without
formality. A passing guest recompensed a woman with a small cash gift at
cach visit. Buta more regular husband. .. had certain customary obligations.
... Most important, however, when a woman became pregnant it was
essential for one or more men of appropriate sub-caste to acknowledge
probable paternity. This they did by providing a fee of a cloth and some
vegetables to the low caste midwife who attended the woman in childbirth.
If no man of suitable caste would consent to make this gift, it was assumed
that the woman had had relations with a man of lower caste or with a
Christian or a Muslim. She must then be either expelled...or killed by
her matrilineal kinsmen. ...the fate of the child in such a case,...I do not
know whether he was killed or become a slave; almost certainly, he must
have shared the fate of his mother.

As a result, Gough concludes (p. 31) that the concept of legally esta-
blished paternity was of fundamental significance in establishing a child as
a member of his lineage and caste, so that the Nayars become a society in
our sense,

2.6 Consanguineal and affinal relations; prescriptive terminologies. A
sequence formed from the eight primary relations F, M, B, Z, S, D, H, W is
said to be consanguineal (having common ancestors) if it contains no H or
W, and otherwise it is affinal (related by marriage). A consanguineal
sequence is lineal ascending if it consists of F's and M’s alone, it is lineal
descending if of S’s and D’s alone, and collateral (alongside of lineal) if it
contains a B or a Z possibly preceded by the ascending letters F and M
and possibly followed by the descending letters S and D. Collateral se-
quences beginning or ending with their B or Z are collineal (close to lineal)
and otherwise ablineal. Thus parents, children, grandparents, grandchildren,
greatgrandparents etc. are lineal; uncles, aunts, nephews and nieces with any
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number of prefixed greats are collineal, cousins of every kind are ablineal,
and in-laws are affinal.

So to decide whether a given sequence of the eight letters is consanguineal
or affinal we need only look for the presence or absence of H and W, but
when we come to consider the corresponding kinterms the situation is more
complicated. In English, for example, some kinterms (e.g. nephew) are
strictly consanguineal, some are strictly affinal (e. g. father-in-law), and two
kinterms are both consanguineal and affinal; namely, wuncle for FB, MB,
FZH and MZH, and aqunt for FZ, MZ, FBW, MBW. Similarly, in Sencca
(9.1 and 9. 2) all kinterms are strictly consanguineal or strictly affinal except
two; namely, hocsote for FF, MF, WFF, WMF and ocsote for FM, MM,
WFM, WMM. Thus in English and Seneca the "overlap” between consan-
guineal and affinal kinterms consists of just two terms.

But in many other languages the overlap is much greater. In Tamil
(Table 10.5) it includes all kinterms except the two “special” affinal terms
kanavan=husband and mainaivi=wife, and in Murngin it is total in the sense
that every one of the 24 kinterms is both consanguineal and affinal; e. g.
due is not only husband but also FZS (and FFZSS etc., i.e. first cousin,
second cousin, ... see 2.7) and galle is not only wife but also MBD (and
MMBDD etc.)

This overlap will naturally be more extensive for tribes with prescribed
marriage, i.¢. tribes in which a male is expected to marry a collateral
kinswoman, call her ego’s K-relative; e. g. first cousin or second cousin etc.;
for then every affinal relative is also consanguineal. Thus the overlap is
small in English, with free marriage, and large in Murngin, with galle-
marriage, i.e. marriage to a kinswoman to whom ego applies the same
kinterm as to his MBD. So if the overlap is large we may look for
evidence of prescribed marriage.

The cvidence for or against prescribed marriage will usually be provided
" by the consanguineal terminology alone, for the following reason. If ego’s
father, i. c. any married male in the tribc, has married his (the father’s)
K-relative, then we will expect to find that ego applies the same kinterm
to ego’s mother (i.e. ego’s father’s wife) as to ego’s father’s K-relative.
In other words, M and FK will go by the same kinterm. Also, since ego’s
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child is ego’s wife's child, for a male speaker C and KC will go by the
same kinterm. Again, if we let K denote the relation reciprocal to K (e. g.
if K is MBD, then K is FZS), we expect F and MK, and for a female
speaker C and KC, to go by the same kinterms.

For example, in Murngin, with K=MBD: a male speaker applies the
kinterm arndi to his mother and to all his FMBD’s, whether married to his
father or not, and the term gatu to his own children and to all the children
of any of his MBD’s; and similarly a female speaker applies bapa to her
father and to all her MFZS’s, and waku to her own child and to the children
of all her FZS’s. For this reason we say that the Murngin terminology is
prescriptive, 1. e. indicative of prescribed marriage.

On the other hand, the English and Seneca terminologies are non-
prescriptive, since e. g. ego does not apply the kinterm mother to any of his
father’s collateral relatives.

2.7 Cousins, removed and non-removed. Since cousins play a prominent
role in kinship terminology, let us examine them more closely.

Ego and alter are first cousins (non-removed) if they are not siblings
but have a common grandparent, i.e. if their nearest common ancestor is
two generations above them. Thus there are sixteen kinds of first cousins
non-removed: namely

FBS, FBD, FZS, FZD, MBS, MBD, MZS, MZD,

with a distinction, important in some languages, between male and female
speaker for each of these eight; e. g. for the Tolowa Indians in California
pFZD is ontdesi and ¢FZD is seti. Thus the sixteen kinds can be represented
by aPJC with two choices for each of the four ambiguous letters.
Similarly ego and alter are second cousins (non-removed) if their
closest common ancestor is a greatgrandparent, so that there are 64 kinds,
who can be represented by «P2JC?, and in general, ego and alter are nth
cousins (non-removed) if the closest common ancestor is (n+1) generations
above them, in which case they can then be represented by aP*JC». If the
nearest common ancestor is n generations above one of them and (n4m)
generations above the other, they are nth-cousins-m-times-removed and can
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then be represented by aPrJC»+= if alter is m generations below ego, or by
aP»+mJC» if ego is m generations below alter. Thus ego’s first-cousin-once-
removed may be either one generation above ego or one generation below.
If the degreec of removal is not stated, it is assumed to be zero, i.e. the
cousins are non-removed; and cousin alone usually means first cousin.

An impressive example of the manifold possibilities in cousin terminology
is provided by the Southeastern Wintu tribe in the Sacramento valley in
California. Six of the sixteen cross-second-cousins of a male speaker are his
grandchildren, true or classificatory, in, the sense (2.2) that he applies to
them the same kinterm zai as to his own children’s children (12.6); three
are his grandfathers ape, two are his grandmothers amake, two are his
children de; one is his father dantce, one is his mother nake, and one is his
sister hutunice; and for a female speaker the numbers are the same, although
she distributes her cousins a little differently into the various categories.
Yet this apparently bizarre situation, as well as the entire Wintu terminology
can be described by simple and concise equivalence-rules (12.5).

2.8 Cross-cousin marriage. If g and b are cross-cousins such that « is
MBC to b, and therefore b is FZC to g, then « is called a matrilateral
cross-cousin to b, and b is a patrilateral cross-cousin to a. If each of their
fathers has married a sister of the other father, each of the two cousins a
and b is both MBC and FZC to the other, in which case they are called
bilateral cross-cousins. Then cross-marriage is described as follows. If
husband and wife are bilateral cross-cousins, actual or classificatory, the
marriage is called bilateral; if the wife is matrilateral but not bilateral to
the husband, so that the husband is patrilateral but not bilateral to the wife,
the marriage is called matrilateral, and if the wife is patrilateral but not
bilateral to the husband the marriage is called patrilateral. Here it is to
be noted first that the marriage is described from the point of view of the
husband, e. g. in a matrilateral marriage it is the husband who marries a
matrilateral cousin, and second that the three kinds of cross-cousin marriage
are mutually exclusive; i.e. if the cousins are bilateral, the marriage is not
called either patrilateral or matrilateral, even though each cousin is both
MBC and FZC to the other, The extreme importance of the difference
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between patrilateral and matrilateral cross-cousin marriage is made startlingly
clear in Chapter 21.

2.9 The English kinlist. We are now ready to give the English kinlist
(see Table 2.9), namely a complete list of the English kinterms, consan-
guineal and affinal, together with their range of application, after the
manner of a field-worker’s report from an aboriginal tribe,

Table 2. 9 The English kinlist

Kinterm Range
great"~* grandfather | great"~* grandmother P*
grandfather | grandmother P?
Sather | mother P
great"=* greatuncle | great"* greataunt PJ
greatuncle | greataunt PJ
uncle | aunt PI, PJV
nrh-cousin m-times removed PrICH+m, PrimJC*
mh cousin PrJC
cousin PIC
son | daughter [
grandson | granddaughter [
great"® grandson | great"-* granddaughter &
brother | sister J
nephew | niece JC
greatnephew | greatniece Jct
great"™* grearnephew | grear** greatniece o
husband | wife v
Sather-in-law | mother-in-law VP
brother-in-law | sister-in-law IV, VI
son-in-law | daughter-in-law cv
stepfather | stepmother PV
stepbrother | stepsister JI (=PVC)

stepson | stepdaughter vC
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Here we have given only one form of the kinterm for each relation,
although in any language there will usually be several nearly synonymous
forms. An American boy may apply many different terms to his younger
sister, e. g. sis, sissy, or sister, or to his father, e. g. pa, dad, the old man, or
father, some of them used only in direct address, e. g. sissy, and some of
them only in third-person reference, e.g. the old man, and it would be
impossible to mathematize the vagaries of each individual speaker. So in
each case we make a definite choice, usually the one used in formal reference,
e. g. father, with an occasional remark about possible variants.

2.10 Consanguineal kinterms in aboriginal languages. The English
system has an accepted kinterm for every consanguineal relative but the
situation in aboriginal languages is less definite. Under the harsh conditions
of primitive life it is unlikely that any tribesman ever had a living great-
grandfather, although some are recorded among relatively advanced tribes
like the Seneca. Nevertheless the concept is familiar to all aborigines, since
they have terms for second cousins, i.e. relatives with a common great-
grandfather. When asked for the kinterm for FFF informants in some
tribes will say that it is the same as for FF, in others that it is different
and in still others that they never use such a term; and similarly for FFFB,
FFFZ, FFFF etc. Again, it is unlikely that any aborigine, or for that
matter any speaker of English, has ever considered the concept of a 500th
cousin, connected to ego by the chains P500JCs00, although the kinterm for
such a cousin exists in English. In the absence of any natural stopping
place we assume that like English all kinship systems have a coverset of
kinterms for every consanguineal chain, although the field-workers give us
varied information, sometimes stating that grandfather terms go as high as
the third, the fourth or the fifth generation, or that cousin terms apply only
to first cousins, or to first and second, or first, second and third, etc.

2.11 Lineage. If @ and b are two persons such that «F% in some
society, 1. e. such that & is a's father, or paternal grandfather or greatgrand-
father etc., we say that a is a patri-descendant of 5, or an agnatic descendant,
or a descendant in the male line, and b is a patri-ancestor of @. The set of
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all patridescendants of b, together with 5 himself, is the patrilineage, call it
P,, generated by b, who is its progenitor, and for each fixed value of ¢ the
set of all persons a with aF% is the gth patrigeneration G., below b, See
Figure 2.11, where males are represented by g and females by ¢ and to
simplify the drawing we have assumed that each father has exactly two sons
and two daughters. The children of a female are in the patrilineage of
her husband, which is usually different from hers.

Progenitor

I Gy

AN
l!/ U -1
u/uw u/%u G-z

Generation

Figure 2. 11 Patrilineage.

From the fact that no person has more than one father it follows that
any two patrilineages P, and P, are either mutually exclusive or else one
of them, say P,, is a sublineage of the other; i.e. every person in P, is also
in P,, which means that the progenitor » of P, is a patrilineal ancestor of
the progenitor a of P,.

Matrilineages are defined analogously, but when we use words like
“lineage”, “descendant”, “generation” etc., without the patri- or matri- prefix,
we refer to the patri-concept, and similarly for “tribe”, “clan”, “"moiety” etc.
below.

In practical field work a lineage is often considered to be a set of
persons who can actually trace their ancestry back to a certain still-remem-
bered ancestor, whereas a clan is a set of persons who acknowledge common
descent from some comparatively recent ancestor but are unable to trace
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out the details of their connection with him. However, it is hardly
rewarding to mathematize such concepts as memory and vague recollection.

2.12 Tribe. A set T of lineages all of whose progenitors are in the
same generation G, below the ultimate ancestor p, of a race is called a
tribe provided that the lineages have intermarried sufficiently often to ensure
that every two persons in T are related to each other, consanguineally or
affinally, through relatives all of whom are also in 7. The members of the
race in generations above G, are called mythical, and the progenitors in
G, are called the original progenitors of the tribe, in contrast to their male
descendants, each of whom is the (non-original) progenitor of a sublineage
in the tribe. In practice, the members of a tribe usually have closely
related languages and inhabit a fairly well-defined territory.

2.13 Clan, subclan, moiety. If the set of original progenitors of a
tribe is partitioned in any way, i.e. divided into mutually exclusive subsets,
each of the sets of lineages generated by these subsets of progenitors is
called a clan, and the tribe thus becomes a set of clans. In particular, the
entire tribe is itself a clan, defined by putting all the original progenitors
into one class, and any single lineage is also a clan.

If @, b, -+, nis any set of males in the same generation of a given
clan, the set of lineages P,, P, ---, P, generated by these males is a subclan
of the given clan, and this subclan itself may be further divided into sub-
subclans, and similarly for subsubsubclans etc.

If the tribe is divided into two exogamous clans, i.e. such that a male
in either of them must marry a female in the other, each of the two clans
is called a moiety, a Shakespearian word for half. Some idea of the
importance of moieties may be gained from an impressive passage of Shapiro
[1967] on wrong marriage in Murngin.

The boundaries between other social groups can be broken and genea-
logical, kin-categorical, clan and section norms of marriage can be defied,
but moiety boundaries are absolutely fixed and marriage within the moiety
unheard of.
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Thus the set of persons in a given clan may be called a tribe, a moiety,
a clan, a subclan, a subsubclan etc. depending on whether we are considering
the set by itself, or as part of a larger clan, or of a still larger clan etc.
For example, the entire Kariera tribe is itself a clan, by definition, though
it is seldom so called; each of its two moieties is also a clan, though again
seldom so called, and then each of the moieties is divided into ten clans,
so that the entire tribe consists of twenty clans, which could also be called
subclans of the moiety, or subsubclans of the entire tribe.

Finally, since a clan is simply a collection of patrilineages, nothing
prevents a set of subclans, or subsubclans etc., from re-uniting in lower
generations to form a new clan (i.e. a subclan of the whole tribe) which
in still lower generations may again subdivide and so on.

2.14 Overt and latent clans. With our definition of patriclan and
matriclan every tribe must have clans of both kinds, since they are simply
sets of descendants of certain members of the tribe. In the literature,
however, it is often stated that certain tribes have only patriclans, e.g. the
Fox Indians in Iowa, certain others have only matriclans, e. g. the Seneca-
Iroquois in New York, and still others have no clans of any kind, e.g. the
Arapaho in Wyoming. What is meant is that the Fox have named patriclans,
Wolf, Bear etc., the Seneca have named matriclans, Hawk etc., while the
Arapaho attach no social significance to any group of persons in the nature
of a clan. Modern American society is also clanless in this sense; for
although patrilineal descent is recognized through the practice of giving
a child the same surname as its father, nevertheless the “Smith” clan, the
“Jones” clan ete. have no special political or social significance. Clans in
our sense, i.e. sets of descendants of certain forebears, will be called overt
if they have been given native-language names or other explicit recognition
by the tribe, and otherwise they are latent.

2,15 Kuma clans and subclans. As an illustration of clans, subelans
etc. consider the situation among the Kuma in New Guinea, described by
Reay [1959] as “a flamboyant, extroverted people...in whose culture conflict
is inherent.”
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In 1959, there were twenty-seven clans altogether, ten of type A, i.e.
divided only into (explicitly recognized) subclans; fourteen of type B with
subclans divided into subsubclans, and three of type C, each divided into
two subclans called “main segments”, with subsubclans (i.e. subclans of the
main segments) and subsubsubclans. FEach of the subsubsubclans formed
“a mutual labor force, whose members claimed to be much more closely
related to one another than to anyone else”.

The two distinguishing features of Kuma clans are exogamy, i.e. a male
should marry outside his own clan, and internecine strife. As Reay writes:
“a clan seems to be faced with the alternative of expansion or extinction.
Everyone knows of at least two other clans that have died out because of
losses in warfare.,” But if the clan becomes too large, the sets of subsub-
subclans in the two main segments become so far separated from each other
that they begin to act as separate clans, aiming to destroy each other. Reay
continues: “this is a logical implication of the Kuma system. But the
people’s immediate interest is in perpetuating and developing a group of
agnatically related males who are strong and numerous enough to intimidate
their present enemies.” As a result, the clans, subclans etc. continually split
and are reunited in various ways in subsequent generations.

2.16 Sections and subsections. A section of a clan C is defined as a
complete set of alternate generations in C. Thus after arbitrary choice of
a generation to be called G, every clan consists of two sections, one of
them, call it S;,, being made up of all the even-numbered generations, and
the other S; of all the odd-numbered; i.e.

So
St

"'+G4+GE+G{)+G—3+G-4+“‘=
v 4 Gt Gyt Gy Gy + Gy oo

Il

il

- with the result that ego and ego’s grandfather, grandson, greatgreatgrand-
father, greatgreatgrandson etc. are in one section, and ego’s father, son,
greatgrandfather, greatgrandson ctc. are in the other.

Here again, as with clans, it is obvious that every tribe has an even
section and an odd section in the sense of having persons in even and odd
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generations. So a statement like “Murngin has scctions but English does
not” means that in Murngin the sections are overt, e. g. they play a role in
the prescription of marriage, whereas in English they are latent. i.e. they
remain unmentioned because they have no social, political or religious
significance.

For example, the Murngin tribe has moieties named Dua and Yiritcha,
whose even and odd sections are “overt” in the sense that they determine
the prescribed or “right” kind of marriage in Murngin. But in spite of
being overt in this way they are unnamed, so that we shall provisionally
call them the Dua-even, Dua-odd, Yiritcha-even and Yiritcha-odd sections.

Each Murngin moiety consists of 30 named clans; for example, one of
the Dua clans is called Djambarpingu (small bird), and one of the Yiritcha
is called Daiuror (snake). Consequently, there are 60 clans in all, each
with an even and an odd section. Then in the Murngin system each of the
two sections is subdivided into two named subsections, as follows:

Sop = +e0 = G+ Gy + Gy + -+,

S, into:
Spp ==« - +GB+G2+G-2+ A"

and

Sm=v--+Gu.+GL+G..g+"'1

S, into:
Su=+r+ G+ G+ Gy + ---,

so that ego is in the same subsection as his greatgreatgrandfather and his
greatgreatgrandson etc., whereas ego, ego’s father, grandfather and great-
grandfather are all in distinct subsections. The two subsections in the Dua-
even section are called Buralang and Balang, so that we may christen the
unnamed Dua-even section with the compound name Buralang-Balang, and
similarly for the names of the other three sections:

Dua-odd: Karmarung-Warmut,
Yiritcha-even: Bulain-Ngarit,
Yiritcha-odd:  Bangardi-Kaijark.

The significance of these four sections and eight subsections is as follows.
In Murngin there are many different kinds of wrong marriage but just two
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kinds of right marriage, namely “regular” and “alternate” (Webb 1933).
Right marriage is defined in terms of the four sections with compound
names Buralang-Balang etc., and the two kinds of right marriage, regular and
alternate, are distinguished from each other in terms of the eight subsections
with the individual names Buralang, Balang, Karmarung etc,



CHAPTER III

Formal Notation

3.1 Patriline and matriline. From the axioms in 1.7 it follows that
any relation between persons can be expressed in terms of parenthood alone.
For example, if the reader will select some close or distant relative of his
own, say his “cousin’s wife’s cousin’s husband”, he can visualize a sequence
of persons, living or dead, who connect him to his relative in such a way
that in each of the links, i.e. in each of the successive pairs of linking
relatives, one of the two persons is a parent of the other.

Thus we can depict the relationship between ego and alter by a diagram
like Figure 3.1, in which alter is ego’s FBSWMZDH, i.e. ego’s father’s
brother’s son’s wife’s mother’s sister’s daughter’s husband. In such a diagram,
persons are represented by dots, the parent in each link is placed higher
on the page than the child, a father is linked to his child by a heavy solid
line, called a patriline, and a mother to her child by a dashed line, called
a matriline.

FBSWMF
FBSWM FESWMFD=FBSWMZ
/ § N\
/ N FBSWMZDH=al ter
FBSWMZD %
L/ FBSCM=FBEW LY
7 ’ \‘\
FBSC FBSWMZDC

Figure 3. 1. Ego’s cousin’s wife’s cousin’s hushand.

25
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3.2 Reciprocal relations. The parent-relation P is said to be reciprocal
to the child-relation C because the statements “b is parent to «” and “a is
child to 5" have exactly the same meaning, and similarly for H=husband
and W=wife. But the English language has no reciprocal for father or
mother, since e, g. “b is father to &” does not have quite the same meaning
as “a is son to ", which allows the possibility that “b4 is mother to a”.
Many languages do have such reciprocal terms, e. g. Murngin bapa (father
etc.) is reciprocal to gatu (child etc. of a male speaker), and arndi (mother
etc.) is reciprocal to waku (child etc. of a female speaker), and in English
we shall sometimes use the invented terms farherling for “son or daughter
of a male speaker” and motherling for “son or daughter of a female
speaker”. Thus the statements “b is father to «” and “« is fatherling to 5"
have exactly the same meaning, which we express by writing aFb or bFa,
with an overbar to denote a reciprocal relation.

Ordinarily, reciprocal relations are expressed by distinct kinterms; e. g.
parent and child in English, bapa and gatu or arndi and waku in Murngin,
But the phenomenon of kinterm-self-reciprocity, whereby alter applies the
same kinterm to ego as ego to alter, is also common. The only examples
in English are provided by the kinterms for cousin of all kinds and degrees
of removal; e. g. if alter is first-cousin-once-removed to ego, then ego is
first-cousin-once-removed to alter. DBut in other languages throughout the
world, and especially among the Indians in California, examples occur for
a great variety of relations. Thus for the Shastan Indians we find:

arodsa=fb (paternal uncle)=gbe (male speaker’s fraternal nephew | niece)
ambaki=fz (paternal aunt)=gbc (female speaker’s fraternal nephew | niece)
apaki=mb (maternal uncle)=pzc (male speaker’s sororal nephew | niece)
anidi=mz (maternal aunt)=d¢zc (female speaker’s sororal nephew | niece)

3.3 The formal (X, Y)-notation. In order to have a separate notation
for mathematical statements, as distinct from traditional notation for
explanatory remarks, we replace F by X, M by Y, F by X, and M by Y,
P by A (i.e. both father and mother, from the Latin ambo=both) and C
by A. Thus aXb means that a’s father is b, aXb means that a's fatherling
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is b, a¥bh means that a’s mother is b, and aAb means that a’s parent is b.
Consequemlly, XX means that ego and alter have the same father and are
therefore either full siblings, if they also have the same mother, or paternal
half siblings, if they have different mothers, and similarly for Y¥. We write
J (cf. Jack and Jill) to mean full sibling, i.e. XX and YV¥, unless it is
clear that only half-sibling can be meant, as e.g. in the chain JY=XXY
(stepmother=ego’s father’s child’s mother), For if the father’s child were
ego’s full sibling, alter would be ego’s mother, linked to ego by the shorter
chain Y. We also abbreviate XY to W (wife), YX to H (husband) and
AA to V (spouse), so that the sequence of letters FBSWMZDH in 3.1
becomes XJIXWYIYH (see Figure 3. 1).

The chief difference between the traditional notation, which we shall
call “informal”, and our new “formal” notation lies in the fact that the
informal notation requires the subsidiary letters g and ¢ to express the sex
of the speaker, while the formal notation requires them to express the sex
of any person who is not the father or mother of someone in the sequence
linking ego to alter; e. g. puF=pX, pC=X, B=Ju BC=IJX, MBD=YJX¢,
#C=X, pS=Xpy, pMFZS=¢YXIY¥ st (cf. their sketches in Figure 3.). As a
quick check on the correctness of any translation from one notation to the
other, we may look to see whether alter remains in the same generation;
e. 2. in ¢MFZS there are two ascending letters F, M and one descending S,
so that alter is one generation above ego, and similarly in #YXIY e there
are two unbarred letters and one barred.

The most obvious advantage of the formal notation is its convenience
in dealing with reciprocal relations. Thus if ego is linked to alter by the
sequence gMFZS we cannot at once read off the reciprocal chain linking
alter to ego, but in the formal notation ¢YXJY; we need only reverse the
order of the letters, changing barred letters to unbarred and conversely, to
obtain pYJXY4=,MBDD.

Or again, for the wncle | aunt and nephew | niece kinterm self-reciprocity
quoted in 3.2 for the Shastan Indians we have

arodsa:  XJp and pJX,
ambakiz: XJp and ¢JX,
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apaki: Ylp and plY,
anidi: YJp and #JY.

J ’f
i _!
FM=XY MFZ=YXJd dM=0Y MB-YJu MBD=YJXd MFB D=YXJXd
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Figure 3.3 Sketches for English kinterms.

3.4 Chains and strings. A sequence formed from the four letters X,
X, Y, Y is called a chain, or kinchain, and a sequence containing one or
more of the subsidiary letters ;2 or ¢ (or e=elder, y=younger as in 6.1),
is a string, or Kinstring. In particular, the empty sequence formed by no
letters at all is called the empty chain and is denoted by L

Thus chains indicate only the sex of those persons who are parents of
some other person in the sequence (cf. 3.1), whereas strings give informa-



FORMAL NOTATION 29

tion about relative age or about the sex of persons who are childless as far
as the given sequence is concerned. Since the sex of childless persons is
genealogically unimportant, the main part of the information in a string
is already contained in its imbedded chain. So we distinguish types of
kinship systems by differences in their partitions of the set of chains, and
subtypes of a given type by differences in their partition of strings. For
example, Tamil and Telegu belong to the same type (Dravidian) because
they have the same chain-equivalences, but different subtypes because of
the difference in their partitioning of cross-cousin strings (see Figure 10. 2).
Since the present chapter and the next deal only with chains, in particular
with the English system as a type, there will be no further mention of strings
until Chapter Six.

3.5 Alphabet and dictionary; multiplication. The four letters X, X, Y,
Y in that order will now constitute our formal alphabet. Our other symbols
J, H, W, u, &, e, v, F, M, B, Z, S, D are not regarded as letters, i.e. they
do not belong to the alphabet, since J=XX or YY, H=YX, W=XY are
abbreviations for pairs of letters, p, ¢, e, ¥ are not parts of chains, F, M,
B, Z, S, D do not belong to our formal notation at all, and I is merely an
abbreviated statement of the absence of letters. Since a chain is thus a
sequence of letters, it is also called a word (cf. 2.2) and the entire set of
all possible chains, i.e. words, is called the dictionary D. A word is said
to be formed by concatenating its letters, i. e. by writing them in a sequence
one after another; and the word, call it KK’, formed by concatenating two
given words K and K’ is called the product of K and K’. For example, if
K=YX and K’=XYX, then KK'=YXXYX. Concatenation is often called
multiplication, so that the word KK’ is said to be formed by “multiplying”
K with K’.

3.6 Connecting and linking chains, kinterm-coverset. In a given society
U, ego=a is said to be connected to alter=b by a chain, say K=YXXX
(MBC), if there exist three “connecting” persons p,, p,, p; such that the
five persons a, p;, py, ps b are all in U and satisfy the four conditions aYp,,
P XPss PeXpss PsXb, which are usually written in the more concise form



10 FOUNDATIONS OF KINSHIP MATHEMATICS

a¥Yp,Xp,Xp,Xb. Thus ego is connected to alter=ego’s MBC if U includes
ego, ego’s mother p,, her father p,, her father’s fatherling p,, and p,’s
fatherling=alter, with no distinction between dead and living persons.

In any society it may happen that ego is connected to alters=ego by
chains of various lengths. For example, if ego’s father has married his (the
father’s) MBD, ego’s mother is ego’s FMBD as well, so that ego is connected
to her by the two chains Y and XYXXX¢g. In such a case it is only the
shortest connecting chains that will determine ego’s choice of a kinterm for
alter, since ego would not apply the kinterm first-cousin-once-removed to
his own mother. To take account of this fact we say that the shortest
connecting chains not only “connect” but also “link” ego to alter, so that
only linking chains determine choice of kinterms. Then the complete set
of native kinterms applicable to relatives to whom ego is linked by a given
chain K is called the coverset, or kinterm-coverset, of K in the given termi-
nology. Thus the English coverset for the chain XJ consists of the two
kinterms uncle | aunt, for XJIX it is the single term cousin, and so on.

Many linking chains have no native kinterm, e. g. WBW=XYXXXY in
English. But we would like every chain to have a coverset of some sort,
since we wish to consider a native terminology as a partition of the set of
all chains on the basis of their coversets (cf. 1.6). So to the chain WBW
in English we agree to assign kintermless as its coverset. Then two chains
K and K’ with the same coverset are said to be coverset-equal; e. g. XXJX
and XYJY are coverset-equal in English because the coverset for each of
them is first-cousin-once-removed; and WBW and HZH are coverset-equal
because each of them has the coverset kintermless.

3.7 Natural and auxiliary chains. The eight pairs of letters XX and
YY (brother | sister), XY, YX, XX, YY, XY (wife), and YX (husband) are
called turns, since they turn from ascending (unbarred) letters to descending
(barred) letters or vice versa. The pairs XX, YY, XY and YX are upper
turns, and the pairs XX, YY, XY, YX are lower turns. The pairs XX, YV,
YX, XY associated with the native kinterms 5|z and % |w are natural
turns, and the others are aunxiliary. Chains with no turn are lineal, with
an ppper turn but no lower turn they are collateral; lineal and collateral
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chains are conmsanguineal, and chains with a lower turn are affinal. Collateral
chains starting or ending with their turn are collineal and all other chains
are ablineal (cf. 2.6). The empty chain I and chains with an auxiliary
turn are called auxiliary chains, and the others are natural chains.

Every auxiliary chain has the coverset kintermless. For if K contains
an upper auxiliary turn XY or YX it cannot connect ego to any alter
since the intermediate person p, in p,_,Xp,¥p,,, would have to be both
male and female, i.e. father to p,., and mother to Pevy» and similarly for
YX; and on the other hand a chain with a lower auxiliary turn XX or
YY cannot be the shortest chain from ego to alter. For if say the chain
K=XXX with the lower auxiliary turn XX connects ego=a to ego’s son’s
child’s father=>4 with aXp,Xp,Xb, then ego’s child’s father b is necessarily
the same person as ego’s son p,, so that ego is connected to p,=b by the
shorter chain aXb. More generally, a chain connecting ego=a to alter—=
b+a with intermediate relatives p,, ps, «++, p,_;, cannot be a linking chain
unless all the (n+1) persons a, py, +++, p..., b are distinct.

Finally, the empty chain I connecting ego to himself has the coverset
kintermless, since ego never applies the same kinterm to himself as to any of
his relatives.

The advantage of admitting auxiliary chains into our dictionary, even
though they cannot have native kinterms, lies in the fact that they allow
us to form the product of any two chains without exception. With the
natural chains alone we could not multiply, say K=XX (grandfather) by
K'=YX (female speaker’s grandchild), since the resulting product KK’=
XXYX is an auxiliary chain. As we shall see, it is this ability to multiply
without restriction that enables us to describe kinship systems as groups
and monoids, and thus to compare them more easily with one another.
Getting rid of exceptions by introducing new entities is a common practice
in all branches of mathematics.

3.8 Foci. The total number of letters in a kinchain, written in
unabbreviated form, is called the length of the chain, a concept which in
some legal systems determines the share received by alter from the estate
of an ego who dies intestate; for example, XY, XY, J, W, H are of length
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two, and VI, JV are of length four. The number of unbarred letters minus
the number of barred letters is the height of the chain, which determines
the generation in which alter stands with respect to ego, the five generations
G, Gy, Gy, G_, G_, around ego being called the central gemerations. Thus
XYXX is of height two and therefore belongs to generation G, and the
empty chain I is of length and height zero and therefore belongs to G,
We also make use of such readily understood notation as X3 for XXX, X-*
for X#, and X° for I

Then the entire set of chains, i.e. the dictionary is said to be arranged
in dictionary-order if shorter chains precede longer and chains of the same
length are arranged alphabetically by the order X, X, Y, ¥. Thus the
entire dictionary, unlike Webster’s, contains infinitely many words, in the
following order:

LX XY ¥ X% XX XY XD, R, i, ©F, XXX, 64,
YYY, XXX oo

In any set of chains the earliest in dictionary-order is called the leading
chain, or leading focus, and all chains of the same length as the leading
focus, i.e. all the shortest chains in the set, are also called foci. For
example, in the list of chains XJY, YIR, XXJXY, XYIJYY, YXIXX, ...
for the Seneca term akyase (pje, cf. 2. 3), the foci are XJY and YJX, and
the leading focus is XJY.

With the definitions and notation of this chapter we are now ready to
begin our formal description of the English kinship system,



CHAPTER 1V

The English Kinship System

4.1 Traditional listing of kinterms. Since we are interested only in
kinterm-recurrences, it might seem that we should describe a kinship system
simply by listing its kinterms, each accompanied by its corresponding chains,
as is done in standard field-reports on aboriginal terminologies. For the
English system a report would contain entries like the following:

father F uncle FB, MB
mother M greatuncle FFB, FMB, MFB, MMB
grandfather  FF, MF nephew BS, DS

grandson S8, DS greatnephew  BSS, BDS, ZSS, ZDS

But a mere listing of kinterms fails to state any general law about the
system and is therefore too long-winded to be suitable for classification of
systems. We must search for a more concise description, i.e. for a general
law. Since the traditional notation obscures regularities in the system by
using too many letters, with no reciprocals for F, M, S and D, we conduct
our search in the (X, Y)-notation.

4.2 Partition by coverset-equality. We first assemble the kinterms into
rows according to their coversets, as in Table 4.2, In each horizontal row
the coverset-equal chains are arranged in dictionary-order and the rows are
arranged under one another with their leading foci appearing in dictionary-
order.
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Table 4.2 Partition of the set of all chains by
coverset-equality in English

Consanguineal kinchains

Coverset Chains
father | mother b, . 3
son | daughter =Y

grandfather | grandmother XX, ¥YX | XY, YY
grandson | granddaughter XX, X¥, ¥YX, YV

uncle | aunt XI, YJI (and XJV, YIV)
nephew | niece X, 1Y
cousin XIR, X)¥, YIR, YI¥
first-cousin-once-removed XXIX, XXI¥, .-, YYIY, XURR, XIX¥, ..., YI¥Y

pth-cousin-q-times-removed Xera X, oo, YOHYR, XeJRere L. YHIY#e

Affinal kinchains

husband | wife V (i.e. ¥X | XY)
father-in-law | mother-in-law VA (i.e. ¥XX, XYx | ¥XY, XYY)
son-in-law | daughter-in-law AV (i.e. XYX, Y¥X | XXY, ¥XY)
brother-in-law | sister-in-law VI, IV (i.e. XYJ, IXY, ¥XJ, 1¥X)

stepbrother | stepsister JI=AVA (e.g. XXYTY=AVA)
uncle | aunt XJV, YIV (and XJ, YJ)
kintermless all other affinal chains

4.3 [Partition by coverset-equivalence. As the next step toward dis-
covering a general law, we note a fundamental difference between two
different kinds of coverset-equality. For example, the three chains XXJX,
XXJY and XJXX are all coverset-equal (cousin-once-removed). But the
coverset-equality of XXIJX with XXJY is quite different from its coverset-
equality with XJXX. The two chains XXJX and XXJ¥ not only have the
common coverset cousin-once-removed when they are not parts of longer
chains, i.e. when they link ego himself to ego’s own cousins once-removed,
but they also produce coverset-equality when they are parts of longer chains,
say as parts of the longer chains YXXJX and YXXJY with prefixed Y, or
as parts of XXJXY and XXJYY with suffixed Y. For in the first case
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both YXXJX and YXXJY (ego’s mother’s cousins-once-removed) have the
coverset cousin-twice-removed, and in the second case both XXJIXY and
XXIYY (children of ego’s cousins-once-removed) have the coverset second
cousin, and the situation is the same when any chain, call it K, is prefixed
in place of Y or suffixed in place of Y. In other words, if we write K for
XXJX and K’ for XXJY, we have the result: not only is K coverset-cqual
to K, but it is also true that the product K,K is coverset-equal to K,K’ and
KK, to K'K,, for all choices of the multiplier X,. This situation is described
by saying that the coverset-equality of XXJX and XXJY is stable under
multiplication, and the two chains are then said to be coverset-equivalent.
But for the two chains XXJX and XJXX the situation is quite different.
Here again they are themselves coverset-equal to each other with the com-
mon coverset cousin-once-removed, but now the coverset-equality disappears
when they are parts of longer chains. For now, when Y is prefixed, the
coverset for YXXIX is cousin-twice-removed, but for YXIXX it is second-
cousin, and when Y is suflixed, the coverset for XXIXY is second-cousin
but for XIXXY it is cousin-twice-removed. In other words, if we write K
for XXJX and K/ for XJXX, we have the result; the two chains K and
K'' are themselves coverset-equal, but for some choices of a factor K, the
two chains KK and K,K/ are no longer coverset-equal, nor are KK, and
K" K,. This situation is described by saying that the coverset-equality of
XXJIX and XJXX is unstable under multiplication, and the two chains are
then said to be coverset-coincident, in symbols XXJX =XJXX. So when we
state that two chains are coverset-equivalent we are stating recurrences of
kinterms for many pairs of chains throughout the native terminology and
arc therefore describing a basic property of the whole kinship system; but
when we state that two chains are coverset-coincident we are merely stating
a recurrence for those two chains themselves, so that we are no longer
dealing with a property of the terminology as a whole but with an accidental
feature of the given language, like the uncharacteristic failure of English to
distinguish higher and lower generations for removed cousins. Consequently,
we may expect to come closer to a general law if we base our partition
on coverset-equivalence rather than coverset-equality; i.e. if we refine the
partition by coverset-equality in Table 4,2 into a partition by coverset-
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equivalence, a step which requires us, for example, to split the single row
labeled cousin-once-removed into two rows, that might be labeled, say:

cousin-once-removed up: XXIX: XX0F. VIR, i, YT
cousin-once-removed down: XJXX, XIXY, XJ¥X, ..., YIYY.

4.4 Stability, product of Kinterms. Stability owes its importance to
its connection with such questions as: what kinterm does ego apply to ego’s
grandmother’s grandfather? Such a kinterm is called the product of the
two given kinterms because it is found by multiplying any chain for grand-
mother by any chain for grandfather and then examining the coverset of the
product-chain. Here the two sets of chains are:

for grandmother: XY, YY
for grandfather: XX, YX.

So to obtain the desired kinterm for grandmother’s grandfather, we multiply
any chain in the first row YY, by any chain in the second row, say XX,
thereby obtaining the product-chain YYXX with coverset greatgreatgrand-
father, from which we conclude that in English a grandmother’s grandfather
is called a greatgreatgrandfather.

But we can draw this conclusion only if, as in the present case, the
result is the same for all four possibilities arising from either of the two
choices of a representative chain from the first row and from the second
row.

But now consider the question: what does ego call ego’s grandmother's
cousim-once-removed?

Here again we set out the chains, two for grandmother and sixteen for
cousin-once-removed, eight of them coverset-equivalent to XXJX and eight
to XIXX:

grandmother : XY, YY
cousin-once-removed: XXJX, XXJY, ..., YYIY; XIXR, XJIXY, ..., YIYY.

In this case the answer will differ according to our choices of representatives.
If we take XY from the first row and say XXJX from the second we
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obtain XYXXJX with the coverset cousin-three-times-removed, but if we take
say XJXX from the second row we obtain XYXIXX with the coverset
second-cousin-once-removed.

So the kinterm applied by ego to ego’s grandmother's grandfather is
uniquely determined, but not the kinterm applied to ego’s grandmother's
cousin-once-removed, for the reason that the coverset-equality of the chains
for cousin-once-removed is not stable.

4.5 Abstract kinship system. Any native terminology partitions the
set D of all chains on the basis of coverset-equality, in other words, the
terminology is an array of rows, i.e. classes, as in Table 4.2, each row
being labeled by its coverset with the word kintermless supplied as a
coverset for those classes that have none in the native language. In many
languages, e. g. English, this partition by coverset-equality is unstable, in
many others it is stable, at least for consanguineal chains.

But let us now consider an arbitrary partition P of the set ® of all
chains, i.e. any array of the chains arranged in rows. If for every choice
of two chains K and K’ from the same row, i.e. from the same class in
the partition, and for every choice of a multiplier chain K, from any class,
the product K K falls into the same class as K,K’, and KK, into the same
class as K’K,, the entire partition is said to be stable.

Any stable partition P of the set © of all chains is called an abstract
kinship system, abstract because as yet no kinterm-coversets have been
assigned to its classes. Nevertheless, in analogy with the product of two
kinterms (4.4) we can still speak of the product of two classes in P as being
the unique class containing the product KK,, where K is any representative
from the first class and K, is any representative from the second (see class-
multiplication in 5. 2).

An abstract system becomes concrete if a label, called a “coverset” and
possibly consisting of the single word kintermless, is attached to each of
the classes in the partition. Then any statement to the effect that two given
chains K and K’ have the same coverset, i.e. are in the same class, implies
the infinitely many statements that K K has the same coverset as K,K’, and
KK, as K'K,, for all choices of K;,. So we may hope that it will be
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possible to give a very concise description of coverset recurrences in such
a system,

To describe any actual system we therefore adopt the following
procedure. We determine an abstract system such that when it is suitably
labeled with actual native kinterms the resulting concrete system is close to
the actual system and then, if necessary, we provide supplemental statements
of the discrepancies between this concrete system and the (possibly unstable)
actual system. We shall find that such a description can in fact be very
concise.

4,6 Partition by equivalence-rules. When we examine this new parti-
tion, namely by coverset-equivalence rather than coverset-coincidence, we
are at once struck by a certain general law, namely the substitutability,
almost always without change of coverset-equivalence, of X for Y, Y for
X, X for ¥ and Y for X. For example, XXJY can be obtained from the
coverset-equivalent chain XXJX by substituting Y for X in the fourth place,
but XJXX cannot be obtained from the non-coverset-equivalent chain XXJX
by any combination of the four suggested substitutions.

So we now consider a third partition of chains for the English system,
namely: two chains K and K’ are put into the same class if they can be
obtained from each other by the substitutions X for Y, Y for X, X for ¥
and Y for X, in which case they are said to be chain-equivalent or just
equivalent, in symbols K-~K’. Any class in this partition, i. e. any complete
set of equivalent kinchains, is called a kinclass. For example, one of the
English kinclasses consists of the four chains XX, YY, YX, X¥, the first
two of which are natural, with the native coverset brother | sister, while the
last two are auxiliary and therefore have the coverset kintermless. In such
cases we say that the kinclass as a whole has the coverset brother | sister,
namely the coverset common to the natural chains in the class.

Since the two particular egnivalences X ~Y and X~Y imply all the
others, they are called the equivalence-rules for the English system.

The partition based on these rules will be stable. For if K~K’, then
KK~KK' and KK~K'K, since we can obtain KK’ from KK, and KK, from
K’K, by simply making the substitutions on K necessary to transform K
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into K/,

A kinship system with the rules XY, X~V is said to be non-bifurcate
because it does not distinguish the father’s side of the family, the so-called
“sword” side, consisting of the chains XJ, XJX, ... that begin with X,
from the mother’s or “distafi” side, consisting of the chains YJ, YIX, ...
that begin with Y.

4.7 Supplemental statements. Our description of the English system
by the rules X~7Y, and X~¥ has the desired conciseness, but we must note
four respects in which it does not precisely reflect the actual recurrence of
kinterm-coversets in English. First, it makes X equivalent to Y, although
father is the coverset for X and mother for Y, and similarly for other
chains ending in X or Y, e.g. JYX (sister’s husband=brother-in-law) and
JXY (brothers’ wife=sister-in-law). Second, it fails to register the recur-
rence of first-cousin-once-removed in XXJX and XIXX (see just above)
or of brother-in-law in JYX (sister’s husband) and XYI (wife’s brother).
Third, it sometimes makes auxiliary chains, e. g. XY and YX, with coverset
kintermless, equivalent to natural chains, e.g. XX and YY, with native
coverset b | 2. Fourth, the rule fails to state that in English almost all
natural affinal chains are coverset-equal with the common coverset kinterm-
less, the only exceptions being those of length two or three, the chains JJ
and VI=JV of length four and the chain PJV (=PJ) of length five (see
Table 4. 2).

The first case, arising from the fact that final X and Y distinguish sex
of the referent, is almost universal for kinship systems and will therefore
be tacitly assumed, with a special statement only for the very rare systems
in which it does not hold. The second case will require a supplemental
statement in any complete description of the English system, but the third
can be safely ignored, since it will not mislead anyone into thinking that
an auxiliary kinchain can have a native coverset, and the fourth can be
dealt with by simply listing those affinal chains, as we have just done,
that have no native coversets in English.

4.8 Final description of coverset-recurrence in English. We can now
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give a concise, correct and complete description of the recurrence of coversets
in English as follows: like all other systems, the English system is a
partition of the set of all chains; in English, the partition is defined by the
equivalence-rules X~Y, X~Y., Two supplemental statements are then
necessary:

i) the chain-coincidences are
a) Ar+tJAe~ AtJAr+e
i. e. cousins-removed-up are not distinguished from cousins-
removed-down.
b) IV=VI]
i. e. siblings’ spouses go by the same kinterm (b-in-law | z-in-law)
as spouses’ siblings
¢) PI=PIV

L. e. spouse of uncle | aunt is also uncle | aunt

ii) the special affinal chains with non-empty coverset are:
those of length two or three, the chains JJ, JV=VJI of length
four, and the chain PJV (=PJ) of length five.

However, this description refers only to recurrences of coversets as a
whole, although recurrences of kinterms within a given coverset are also
part of a given kinship system. For example, the kinterm for a male
referent recurs for a female referent in the coverset for XIX (cousin) but
not in the coverset for XI (uncle | aunt), and in other languages similar
recurrences and non-recurrences may depend on sex of the speaker, relative
age of ego and alter and other factors. To this subject we return in
Chapter Six. In the meantime let us consider the question of representing
coverset-recurrence by means of geometric diagrams called “kingraphs”.

4.9 Kingraph. A diagram consisting of points, some or all of which
are connected in pairs by directed lines, i.e. lines with arrowheads, is called
a (directed) graph. If the points represent kinclasses, some of which are
connected by patrilines (solid) or matrilines (dashed), the graph is called
a kingraph. In such a graph it is often convenient to inflate the points into
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rectangles, or boxes, so that glosses or other information can be written
inside them. For systems like English with non-prescriptive marriage, it is
hardly worthwhile to include the affinal chains in a geometric diagram since
only a few of them have native kinterms. As for prescriptive systems,
the one diagram serves for both kinds of chains; see e, g. Figure 10. 2.
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Figure 4.9 English consanguineal kingraph.

4.10 Tracing-out. The kingraph in Fig. 4.9 can be used to give a
purely geometric proof of any consanguineal chain-equivalence, say
XYJYX~XXIXY for second cousins, by a procedure called “tracing-out”,

We first replace the J's by XX and then trace out K=XYJ¥X=XYXX¥X
by putting an index finger on the I-box in the kingraph and moving the



42 FOUNDATIONS OF KINSHIP MATHEMATICS

finger up a patriline for the first X, up a matriline for the Y, up a patriline
for the next X, down a partiline for the X, down a matriline for the ¥
and down a patriline for the last X, finally arriving at the second-cousin
box. Then K’ will be equivalent to K if and only if tracing-out K’ brings
us to the same box as K. From a strictly mathematical point of view this
geometric procedure adds nothing to the algebraic proof:

XYJYXRXXJ¥YX by Y for X in second place,
XXJXX by X for Y in fourth place,
XXIXY by Y for X in fifth place.

However, geometric tracing-out is usually much quicker and often contri-
butes greatly to ease of comprehension.



CHAPTER V

Kinship Systems as Quotient Monoids

5.1 Definition of a monoid. For more concise application to kinship
systems other than English we now wish to state the preceding develop-
ments in more mathematical form.

We consider a set, call it B, of elements a, b, ¢, -+ of any kind, i.e.
not necessarily of chains as heretofore. Then, as a generalization of the
operation of concatenating two chains, we assign to each pair (a, b) of
elements of B an element ¢ in B called the product of @ and » under an
operation of some kind, which we call (generalized) multiplication. For
example, 2 may be the set of all integers ..., —3, =2, —1, 0, 1, 2, 3, - .+
and the operation may be addition, or subtraction or ordinary multiplication
etc. Or, as up to now, B may be the set © of all “words” in the “dic-
tionary”, i.e. all chains K, K’, K”, ... formed from the four letters X X,
Y, Y under the operation of concatenation. Or the multiplication may take
many other forms, provided only that some operation assigns an element ¢
in B to each pair (a, b) of elements in 8. The operation may be denoted
by a general symbol, say (), in which case we write a ) b=c¢, or by
special symbols like % or + or —, when we write axb=c, or at+b=c,
or a—b =c, or even by mere juxtaposition, i.e. ab=c.

The set 3, together with the structure on B consisting of all pairs (a, b)
and the associated products ¢, is then called a closed binary system, “closed”
because the product of two elements in 93 is also in § and “binary” because
multiplication is defined for pairs of elements. A closed binary system is
also called a groupoid and it is customary, though imprecise, to let the same
letter, say ¥, denote not only the underlying set itself but also the whole
groupoid, i, e. the underlying set together with its rule for multiplication.

43
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Then a groupoid may have either, neither or both of the following
two properties.

i) the multiplication is associative; i.e. (pq)r=p(qr) for all p, q, r
in B.

For example, if 5 is the set of all integers, ordinary multiplication and
addition are associative, €. 8. 9x (5x2)=(9%5) %2 and 9+(5+2)=(9+5) +
2, but subtraction is not associative; 9—(5—-2)=6 but (9-5)—-2=2. Orif
% is the set of all words on X, X, Y, Y, then concatenation is associative,
since the final product of any three words K,, K;, K; is the same whether
we first form (KyK,) and then adjoin K, to it, or first form (KK,) and
then adjoin it to K,. An associative groupoid is called a semigroup.

ii) there exists an identity-element, or identity, call it i, such that pi=
ip=p for all p in B.

Thus if B is the set of all integers, ordinary multiplication has the
identity-element 1, and addition and subtraction have 0, but if 9B is the
set of all even integers, ordinary multiplication has no identity-element. If
B is the set of all chains, the empty chain, linking ego to himself, is the
identity. A semigroup with an identity-element is called a monoid. For
example, the set of all chains under concatenation, i.e. the structure which
we have called our dictionary ®, is a monoid.

A monoid cannot have two distinct identity-elements, call them i and
i’ +i. For then we would have the contradiction i=ii’=/,

For a third property, which makes a monoid into a “group”, see 11. I.
We shall have no need of groups until we arrive at kinship systems with
prescribed marriage in Chapter Ten. For we shall discover that prescriptive
systems are groups, whereas non-prescriptive systems are only monoids.

For all systems, prescriptive or non-prescriptive, our equivalence-rules
will occur in pairs such that either of the pair is formed from the other
by taking reciprocal chains; e, g. English has the pair X~Y, X~Y, Fox has
X¥~X, YX~R, Tamil has XX~XY, XX~¥X and YX~XY, XY~ ¥X.
From an anthropological point of view this situation is quite natural, since
it means that if say a male ego applies the same kinterm to two referents,
e. g. grandfather, to his XX- and YX-referents, (i.e. XX~YX) then each
of them will apply the same kinterm grandson to ego (i.e. XX~XY).
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5.2 Stable partitions; class multiplication. If P is any partition of the
elements of B and if we write a~b to mean that a and 4 are in the same
class in P, then P is said to be stable, i.e. stable under the multiplication
for 2, provided that a~b implies ca~ch and ac~be for all ¢; that is to
say, if two equivalent elements a and 4 remain equivalent after being
multiplied on the left or on the right by any element ¢ (cf. 4.3).

If P is stable with a~b and c~d, then ac~be, by multiplication of a~b
with ¢ on the right, and bc~bd by multiplication of e~d with b on the
left, and therefore ac~bd. We now let {a} denote the entire class contain-
ing the element @, so that the two statements a~b and {a}={b} have
exactly the same meaning. Then the above result, namely that a—~b and
c~d imply ac~bd, means that for a stable partition the class {ac} ={bd}

is the same for every choice of representative a, b, ... from the class
{a}={b}= --- and of representative ¢, d, ... from the class {c}={d}=...
This uniquely determined class {ac}={bd}=-.. is called the product under

class-multiplication of the two classes {a}={b}=... and {c}={d}=...
(again cf 4. 3).

As a simple example, let B be the set of all integers under ordinary
addition and let P be the partition of B into two classes, namely the even
class, call it e,

voey, =4, —2.0, 2,4, -u:
and the odd class, call it o,
seey, =3, =1, 1, 3, 5, .

Then P is stable. For if @ and » are both in say the even class, then
c+a and a+c will be in the even class as c+b and b regardless of the
choice of e.

5.3 Quotient-monoid. The class-multiplication defined in 5.2 for the
classes of any stable partition P of a given monoid B is associative, as
follows at once from the associativity of multiplication of individual chains:
and the class {I} is an identity-element since for every class {Kk} we have
{K}; {I}={Kl}={IK} =K. Consequently the set of classes under class-
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multiplication forms a new monoid, denoted by /P and called the quotient-
monoid of P by A

For example, if 9 is the set of all integers under ordinary addition and
P is the even-odd partition (5.2), the quotient-monoid /P has two elements,
namely the even class and the odd class, call then e and o, with e for its
identity-element and with the following “multiplication-table”:

€ Q
e € a
o (7] e

since e. g. odd plus odd=even.

5.4 Monoids and generating relations. In 4.5 we defined an abstract
kinship system as being any stable partition of the set © of all chains, and
showed that the English system, as defined by the equivalence-rules X~Y,
X~Y, is a stable partition of this kind. More generally, let us choose any
arbitrary set of pairs of chains (K, Ky'), (K, K1), -+, (K.-1, K1)} e g
for the English system the two pairs (X, Y) and (X, ¥). Let us then form
the partition P of © which assigns two chains K and K’ to the same class
if each of them can be obtained from the other by substitutions of K, for K,
K, for Ki, -+, K,_, for K,_,, K,., for K!_, and conversely. This partition
will be stable, for if K~K’, then K,K~K,K’' and KK,~K'K, for every chain
K,, since e. g. KoK can be obtained from K,K’ by carrying out the allowable
substitutions on K’ alone.

In order to avoid the inconvenience of printing many curly brackets,
we now denote the class {K} containing the chain K by the corresponding
lower-case letter k&, so that e.g. {K}={XYYYX} becomes k=xyyy%, and
the statement K~ K’ has exactly the same meaning as k=k’. Then the
quotient-monoid D/P constructed by means of the pairs of chains (K, K}),

-+, (K,-pp KJ_,) as just above, and therefore with classes k, &/, .. as its
elements, is said to have the equivalence-rules K,~K}, ..., K,.,~K!_, or,
synonymously, to have the generating relations K=K/, ..., K,.,=K/_,. For
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example, the English abstract kinship system has the equivalence-rules
X~Y, X~Y and therefore the generating relations X=y, X=7¥.

The original monoid D itself, which is free of generating relations and
has the property that every one of its elements, i. e. every chain, can be
expressed as a product of the four elements, X, X, Y, ¥ is called the free
monoid on four generators.

On the other hand, the system of the Fox Indians in Nebraska, which
has the equivalence-rules XX~YY~1, YR~Y, XY~¥ (12.2) is called the
monoid on four generators: x, %, y, y with the generating relations xX=yy=i,
yX=y, xy=¥§. As for the (non-bifurcate) English system, its equivalence-
rule X~Y (with reciprocal rule X~¥) reduces the number of generators
from four to two, because Y and Y can be replaced by X and X. Con-
sequently, since the English system has no other equivalence-rule, it is
called the free monoid on two generators, say x and %X. In the same way the
non-bifurcate system of the Yurok Indians in California, which in addition
to X~Y has the equivalence-rule XX~1I (7.2) is called the monoid on two
generators with the generating relation xX=i.

5.5 The English system as a monoid. The English system is now
formed by adjoining the native English kinterms as in Table 5. 5.

We have begun with the English system because of its greater familiarity
but the advantages of the abstract mathematical method will be clearer for
the systems in subsequent chapters, in which each class contains many more
chains than in English. For example, the English kinterm Sfather applies
only to the chain X, whereas the Murngin bapa applies not only to X but
to infinitely many other chains XXJX, XYJY, YXIY, etc. In any case the
defining of “type” by generating relations is a step toward the ultimate
practical goal of cataloguing all kinship systems.
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Table 5.5 The English system as the free monoid on two generators

Kinclasses of
chains natural
and auxiliary

Coverset of the kinclass

i

xX
xx
i?
xﬂ
xxX
xEx

xXX
Xxx
XxX
XXx
XXX

XxXXx
XXXX
XXXX
XExR

XXXx
XXXK
Exxx
XxxX
ExEx
XXRRx

kintermless

Sfather | mother

son | daughter

grandfather | grandmother

brother | sister

YX for husband; XY for wife

grandson | granddaughter

greatgrandfather | greaigrandmother

uncle | aunt

stepfather | stepmother e.g. (XX)Y is “half-sibling’s mother”
and X(XY) “father’s second wife”

nephew | niece

Sfather-in-law | mother-in-law e.g. XYX is “wife’s father”

stepson | stepdaughter e.g. X(XX) is “child’s half-sibling”

son-in-law | daughter-in-law e.g. X(XY) is “son’s wife”

greatgrandsen | greaigranddaughter

greaigreatgrandfather | greatgreatgrandmother

kintermless

cousin

kintermless

step-brother | step-sister e.g. (XX)(XX) is “half-sibling’s

half-sibling”

brother-in-law | sister-in-law e.g. (XX)(XY) is “brother’s wife”

great nephew | great niece

kintermless

brother-in-law | sister-in-law e.g. (XY)(XX) is "wife’s sibling”

kintermless e.g. (YX)(XY) is "husband’s other wife”

uncle | aunt (i.e. spouse of parent’s sibling)




CHAPTER VI

Generation Patterns for Kinterms

6.1 Formation of strings from chains. Equivalence-rules and coverset-
coincidences cannot take into account recurrences of kinterms within a
given coverset. These “internal” recurrences can be of many kinds. For
example, the English kinterm brother applies equally well to elder and
younger brother, in contrast to the Murngin wawa (elder brother) and
yukiyuko (younger brother), or again the English kinterms son | daughter
may be used equally well by male and female speakers, in contrast to the
Murngin gatu (child of a male speaker) and waku (child of a female
speaker). To take care of all such cases we form strings from chains by
adding the subsidiary letters s, ¢, e, ¥, as follows.

The Greek letters y and ¢ (mu for male and phi for female) are pre-
fixed to chains beginning with X or Y to indicate sex of the speaker and
suffixed to chains ending in X or ¥ to indicate sex of the referent. An e
or y inserted before final x or ¢, or in final position if there is no final 7
or ¢, indicates that alter is respectively older or younger than ego, and e
or y before J indicates an older or younger sibling, whether of ego or of
a linking relative. Thus xYJXyg=male speaker’s MBD younger than ego,
YJXy=matrilateral cousin of either sex, younger than ego, YelX¢=daughter
of ego's mother’s elder brother, pelp=male speaker’s elder sister, gyl=
female speaker’s younger sibling, etc.

Then « stands for either g or ¢, and a for either e or y, and the
diacritical marks *, ¥, “, * written over the ambiguous letters A, A and a,
describe relative sex, in the same way as in the informal notation (2: 1),
e.g. AJA means either XJV or YJX, namely “cross-cousin”, AJA means
parallel cousin, either XJX or YJ¥, and &AJA & means either “male speaker’s
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MBD"” or “female speaker’s FZS”, i. e. opposite-sex cross-cousin, matrilateral
for male speaker and patrilateral for female, a common type of prescribed
marriage partner,

6.2 String coincidence. A string or chain that can be obtained from
a given string S, by deleting some or all of the subsidiary letters in S, is
said to be imbedded in S,. In particular, every string contains exactly one
imbedded chain, obtained by deleting all its subsidiary letters. Thus the
chain JX (BC) is imbedded in the string JX¢ (BD) or in X (#BC) or
in ;JX¢ (uBD), ctc. A string is called lineal, collateral, etc., according as
its imbedded chain is lineal, collateral, etc., and is said to be maximal if it
has subsidiary letters in every possible position. For example, eJ¢ (elder
sister) and pe] (male speaker’s elder brother | sister) are non-maximal
strings, since elg can be imbedded in either of the maximal strings pel$ or
gelp, and pel in either pelp or pelp. By the principle stated in 2.9, the
coverset of a maximal string cannot consist of more than one kinterm.

Ego is said to be linked to alter by the string S if ego and alter are
linked (3. 6) by the chain imbedded in S and satisfy the conditions indicated
by the subsidiary letters., e. g. a male speaker is linked to his elder brother
by the chain pelp. The terms “coverset” etc. for chains can be immedately
extended to strings; e.g., the coverset of a string is the set of kinterms
(perhaps consisting of the single term kintermless cf. 3.6), applicable to
relatives to whom ego is linked by the given string. Thus the English
coverset for the string xXJ is uncle | aunt, but for XJg, Xelp, Xylg, pXIo
or uXelg it is aunt alone, and in general, the coverset of any non-maximal
string, or of any chain, consists of the kinterms corresponding to all the
maximal chains in which the given string or chain can be imbedded. For
example, in Tamil (10.1), which has the four kinterms eb, ez, yb, yz for
sibling, the eb stands for peb+ geb, and e alone stands for peb+ geb+ pez+
¢ez. When two strings S and S’ have the same coverset, they are said to
be coincident, in symbols S=5’. The chain-equivalence XXIX~XYJX states
that either of these two chains can be substituted for the other in any
longer chain, but the chain-coincidence XXJX=XJXX or the string-coinci-
dence XXJXp=~XIJXXy states nothing about substitutability in longer chains
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or strings. For strings there is no concept corresponding to the equivalence
of chains.

6.3 Final description of the English system. The description of the
English system given in 4.8 can now be completed by listing its string-
coincidences, namely:

i) Ku~K¢ for ablineal chains K,

i. e., cousin terms never distinguish sex of the referent;
il) e~y,

i.e., kinterms are never distinguished by relative age;

i. e., kinterms are never distinguished by sex of the speaker.

6.4 Generation patterns. Other languages will have string-coincidences
that differ from English, often in rather surprising ways. In this chapter
we give a fairly exhaustive account of them largely on the basis of infor-
mation in Murdock [1970] and Gifford [1922].

Our purpose is as follows. More than 1,000 kinship terminologies are
now known in detail. Yet the information about them is scattered throughout
many publications in diverse and inconvenient form. What is needed is a
concise catalog, distributing the kinship systems into types, subtypes, etc.
We have already arranged for distribution into types by means of equiva-
lence-rules for chains. But the diversity of string-coincidences is so great
that distributions into subtypes will be an awkward task unless we systema-
tize the string-patterns in some suitable manner. To do this we consider
patterns separately in the five central generations G,, G,,, G,,, beginning with
sibling patterns in G, (6.5 and 23.1), and continuing with (father) uncle |
aunt (mother) patterns in G, (6. 6), with (son) nephew | niece (daughter) patterns
in G-y (6.7), with grandkin patterns in the two generations G,, (6.8), and
ending with cousin-patterns in 6.9. The patterns in each of the six diagrams
(Figures 6. 5d, 6. 6b, 6.7a, 6.7d, 6.8, 6.9) are numbered for later reference.
Then for a complete description of the kinterm-recurrences of a given
system, it is only necessary to give the equivalence-rules and the generation-
patterns. For example, the English system is described by
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x=y, X=§, 3, [3], 1 (f, m), 5 (s, d), 2 (pf, pm), 2 (cs, ed).

Here x=y, X=¥, are the equivalence-rules.

The first 3 states that the English sibling-pattern & |z is the one
numbered 3 in Figure 6.5d, Table 23. 15a. The [3] states that the English
cousin-pattern is the one numbered 3 in 6.9, where the square brackets
indicate that for many kinship systems the equivalence-rules themselves will
indicate how cousins are to be treated; e. g., in the generational type in
Chapter Seven it is already clear from the equivalence-rules that (non-
removed) cousins go by the same kinterms as siblings, so that there is no
need for a special entry to indicate the cousin-pattern (cf. 6. 9).

Then the 1 indicates the pb | pz pattern no. 1 in G, while the (£, m)
show that in English there are special lineal terms for father and mother;
and in the same way the 5 indicates the js | jd pattern no. 5 in G_,, again
with special lineal terms for son and daughter.

Finally, the 2 (pf, pm) and 2 (cs, cd) show the grandkin patterns in
G, and G_,, again with special terms.

6.5 Sibling patterns. In writing the eight maximal strings pely, pels,
<+, ¢ylg it is often convenient to omit the J itself, i.e. to write
peps pegy pyp pyd, pep, ged, dyp, pyd,

with corresponding glosses
peb, pez, pyb, pyz, geb, dez, gyb, gyz.

These eight strings or their glosses can be arranged as in Figure 6. 5d, where

male speaker is separated from female by a double vertical line, elder
. person from younger by a horizontal (replaced in running text by a diagonal
slash), e. g. eb| yb, and male referent from female by a single vertical line:

Jis leu |ueq
Hyu|uy ¢

den| deg
by LDy d

Figure 6.5a Strings for the sibling chain J.
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When kinterm distinctions: depend on the sex of the speaker it is often
not the speaker’s sex in itself that is important but the relative sex of
speaker and referent: e.g. in the Omaha system of the Fox Indians in
Towa two brothers or two sisters call each other netotam (same-sex sibling),
whereas a male calls his sister netegwam (opposite-sex sister) and a female
calls her brother netawam (opposite-sex brother). Using the Greek letter
==pi (parallel) o mean that the speaker is of the same sex as the referent,
and similarly y=chi (cross) for opposite sex, we may write the eight
siblings as follows:

Telly LE[t, TYM, YU, X€, Ted, YYd, Ty,

These eight strings for siblings or their glosses web, ..., ryz, may be
arranged as in Figure 6. 5b, where same-sex (i. e., of speaker and referent) is
separated from opposite sex by a wavy vertical line;

J:

Trepl'rrecbixeu')(ed)
Typ| Ty Xy Xy d

Figure 6.5b J in parallel-cross notation.

The number of distinct kinterms for sibling may vary from one to
eight, as illustrated by the examples in Figure 6.5c.

These eight examples have been taken from the approximately complete
set of sibling patterns, numbered from 1 to 52 in Figure 6,5d (cf. Table
23. 15a).

6.6 Patterns in G5 kinterm reciprocity. In generation G, the minimum
number of kinterms is two—e. g., nama | naina in Taromak-Rukai (11.10)—
since 5o far as we know uncle is always distinguished from aunt, even
though in some tribes, e. g. the Coast Yuki in California, father and mother
are combined into the one term parent. On the other hand, the maximum
number is ten, since there may be cight uncle | aunt terms, distinguished by
sex of referent, age relative to ego’s linking parent, and father’s or mother’s
side, and it may also happen that father is distinguished from paternal
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Name

Mbuti

Fox

Algonkian

Tamil

Komba

Caddoan

Assiniboine

Ogalalla
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Number of Reference numbers
Pattern Kinterms in Figure 6. 5d
j one 1
n } X two 2

ilf‘b_ three 13

Yy
eb | ez four 24
yb [ yz
ueblgeb ez five 37
yb ¥z

Heb,, |gez i 43
B Bgye e
neq }Xb pezuez seven 48

myb 1P |dyzhyz

Leb I ¢eb(peziuer eight e

Hybigyb|dyziiyz

Figure 6. 5¢ Examples of sibling patterns.

uncle and mother from maternal aunt. For example, the Wappo Indians in
California have the G,-pattern shown in Figure 6.6a, where as usual the
special lineal terms are given in parentheses:
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JX JY
feb | fez meb | mez
f’
(f) fyb | fyz myb | myz (m)

[=aiya m=naa
feb=oca meb=awa
fez=hoa mez=paha
fub=olo myb=taa
fuz=eisa myz=newa

Figure 6. 6a G, -pattern for Wappo.

Uncle-aunt patterns fall into six basic types, as in Table 6. 6.

Table 6.6 Uncle-aunt patterns

Strings Glosses
a : AN |A¢ pb|pz
ao : Aeyp | Aed peb | pez
' AyulAwb pyb]pyz
Ao XU, X, Yu, Yo pf‘l fz mblmz
ma,X ¢ Xew, Xyu, Yed, Yy, Xp, ¥ 1ebl ¢, b | T2
5 H 1—1} V'SJ- : ¥ Y L} H ]—l 'Fyb G Im
I 1
m,aX t X, Y4, Xed, Xyo, Yey, Yy foufzfofz - fumb]gmbmz
Aag, : Xeu, Xed, Xyu, Xyd feb|fez meb | mez
Yeu, Yed, Yyu, Yyo fyblfyz myb | myz

There are also two subpatterns for Pattern 6:

6a) father’s side and mother’s side are distinguished only for parent’s
siblings younger than the linking parent, so that pattern 6a) has only
six kinterms, since feb and meb are both peb, and fez, mez are both pez.
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AJ

0 Pble

N /\KJ\ .
—

Peb|Pez
2) +Pyb oy 3| |f2 mb | mz

XJ / \ YJ

1) —;:_E",fz mbl:ji 5) fblpfz"tbfz ) umbl[qomb,mz
xJ YJ

6) feblfe'z meb [mez
fyb|fyz myb |myz
Figure 6. 6b Hierarchy of uncle-aunt patterns.

6b) relative age is not distinguished on the mother’s side, so that mez and
myz both become mz and pattern 6b) has only seven kinterms.

Further variety is introduced by the fact that uncles may be taken
from one pattern and aunts from another, as follows:

Uncles Aunts
from pattern from pattern

1) 3), 4), 5) or 6)
2) 1)
3) 1), 4) or 5)
4) 1), 2), 3) or 6)
5) 1) or 3)
6) 2) or 4)

When the uncle-pattern for a given system is different from its aunt-
pattern we give them both, connected by the word “and”. For example,
the Plains Miwok tribe has:

mez
() fb | fz mb Yz (m)
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with
f|lm = appa | uka
fb|fz = tata | ene
mez tomu
mb myz = kaka IE(E.’

which we describe by writing “3(f) and 4(m)”.
In Figure 6. 6b we have arranged the uncle-aunt patterns in a hierarchy to
suggest their possible evolution.

6.7 Patterns in G_,. The coversets for the nephew-niece chains JX
and JY are of particular historical interest because Morgan (8.1) found
them puzzling for the Seneca and Tamil systems. In English they take the
simple form (Figure 6. 7a) that all nephews and nieces are terminologically
distinguished from sons and daughters.

-

A (s)| s| jdf(a)

Js=nephew, s=son,
Jjd=niece, d=daughter.

Figure 6.7a Glosses for the chains JX and JY in English.

In the Seneca system, as in many others, ego’s parallel nephews and
nieces (pJX and ¢JY) are identified with ego’s sons and daughters, but
cross nephews and nieces (¢JX and pJY) are distinguished from them as
in Figure 6.7b.

coverset for JX coverset for JY

sld“¢]"s|¢}'d ufs|ufd||s]d

s|d =haahwuk | kaahwuk
uis | pid\| ¢fs | djd=hayawanda | kayawanda || hasoneh | kasoneph

Figure 6.7b Glosses for JX and JY in Seneca.
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For the Tamils in South India (Figure 6. 7c) the coversets for JX and IY
correspond to those for Seneca-Iroquois except that no distinction is made
between s | yfd and s | d)d.

coverset for JX coverset for JY

v

'
¥s|J

4 v
jd JSdeH'sld

sld

s | d =makan | makal
f 5| fdzmarumakan | marumakal

Figure 6.7¢ Glosses for JX and JY in Tamil.

Here it is to be noted that two kinchains are not said to have the
same coverset unless the same kinterms appear in the same order. Thus
JX and JY are coverset-equal in English because they have the same set
of two kinterms nephew | niece arranged in the same order; but JX and
JY are not coverset-equal in Tamil, even though they have the same set of
kinterms s, d, js, Jd. For when these terms are arranged in standard order,
i.e, first by sex of speaker, then by relative age, and then by sex of
referent, with y before ¢ and e before y, they appear in the order s, d, s,
Jjd for IX and in the order Jjs, jd, s, d for JY.

Unfortunately, the field-worker’s information for nephew | niece patterns
is often presented to us only from the point of view of a male speaker, as
in our Figure 6. 7d, so that we are sometimes left in doubt as to just how the
G_, pattern runs for a given system. In the case of kinterm-reciprocity
with G, we simply write the letter “r” for G_,.

6.8 Grandkin patterns. Here again there may be special lineal kinterms,
e. g ff may differ from g5, as in English or in the Lower Burma system
(7.7) and reciprocally cc may differ from bee, but this situation is less
common in G,, than in G,,.

In G,, self-reciprocal patterns are almost as in G,;. Thus gf (AX) is
often distinguished from gfb (AXJy) or gm (AY) from gmz (AYJ$), and
therefore by reciprocity wee (XA) from pBCC (xJXA) and gee (YA) from
gzce (pJYA). For example, the Serrano Indians have the five G,,-kinterms:
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ka: fr = ffb = fmz =(reciprocally) sc = pbsc = gzsc
XA~XXJpu~XYIp~ (reciprocally) AX~p XX ~gI¥X
teur: mm= mmz = dde= ¢zdc
YY~YYIp~ XY~ YT
prundj:  pmb = pzec
AYJp~pIYA
kwat:  mf = mfb = pdc =pbde
YX~YXIpu~XY~IXY
pindj; pfb =dgbce
AXTg~pIXA

6.9 Cousin patterns. Finally let us give a brief discussion of cousin
patterns, which we have postponed until now because many systems have
no special cousin terms at all (see the remark at the end of 6. 4). For
example, in the generational systems in Chapter Seven cousins are equated
with siblings, and in the Crow-Omaha types in Chapter Twelve they are
equated with relatives in higher or lower generations.

With respect to first cousins, there are five basic kinds of terminology:

1) GENERATIONAL: i.e., erco=prco=sibling; e.g. in Taromak-Rukai
they are all called raka if male and aki female.

2) IroQuols: ecrco+preco=sibling; e.g., among the Mbuti pygmies in
Zaire cross-cousins are sono but parallel cousins and siblings are namami.

Under this heading 2) let us note the eight patterns shown in Figure
6. 9a.

3) ENGLISH: erco=prco+sibling.

4) DESCRIPTIVE: in some languages the eight kinds of first cousins,
irrespective of sex of speaker, are distinguished from one another by kinterms
which simply describe their relationship to ego; e.g. FBS is called father’s-
brother’s-son. A notable example is furnished by Sanskrit, the ancient clas-
sical language of northern India, where we have:

fbs=fbd=pitroyaputra (f=pita, fb=pitroya, s= d=putra)
mbs=matulaputra, (m=mata, mb=matula) etc.
mbd=matulaputri.



FOUNDATIONS OF KINSHIP MATHEMATICS

suidjjed mISNOD-SS0I) 6 9 ML

. =pAldTsAT
i R res
|protlsgaotogn | [oexbores|spon|  |arapllppanfspon | [oreclerensrecien| | SrTeR
¥} (t1ia (11a (1A (a
2[d¥ W aldu u_.a_w:u.ﬁa; pid | srd
(~! (tny (

ofd




GENERATION PATTERNS FOR KINTERMS 635

Such terminologies were called “descriptive” by Morgan (8. 2).

5) SUDANESE: siblings, parallel cousins, and cross-cousins, both patri-
lateral and matrilateral are distinguished from one another by kinterms
which are not obviously descriptive.

With this summary of actually occurring string patterns we are ready
to begin our survey of non-sectional kinship systems.
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CHAPTER VII

The Generational Type

7.1 Yurek kinlist. The consanguineal and affinal kinterms for the
Yurok Indians in northern California [Gifford 1922] are given in Tables
7.1a and 7. 1b. Again, as in English, non-prescriptive marriage is suggested
by the large number of special affinal terms with small consanguineal-affinal
overlap, and again ego does not apply the kinterm for mother (netseko) to
any collateral relative of ego’s father (cf. 2.6), and in the kingraph (Figure
7.3) there is no collateral path from the X-box to the Y-box.

Table 7. 1a Yurok consanguineal kinlist

Chain or string Kinterms Field-worker's description Gloss
A nepcepts | netseko father | mother f|m
A negnemem | nemehi son | daughter s|d
sl pACTA" 1 nepa male speaker’s brother and 1h
n=1, 2,3, ++-: non-removed male cousins
P, GATTA" nelai female speaker’s brother and b
non-removed male cousins
2Jp, pnATJA"S neweyits male speaker’s sister and [z
non-removed female cousins
dlp, GA"IA"S nelet female speaker’s sister and bz
non-removed female cousins
Algpe netsim uncle ph
Al netul aunt bz
JAp nektsum nephew Js
JAB neramets niece jd
AA nepits | nekuts grandfather | grandmother Pl pm
AA nekapeu grandchild, sibling’s grandchild ce

67
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Table 7. 1b Yurok affinal kinlist

Chain or string Kinterm Field-worker’s description
\'% nenos | nepeu husband | wife
YV | XV nepareu | netsewim father-in-law | mother-in-law
AV netsneu | nekep son-in-law | daughter-in-law
Vi netei || netsna | netsuim spouse’s brother | spouse’s sister
VIV nerei || netsuim spouse’s same-sex sibling’s spouse
(i.e. HBW and WZH)
YH | XW netsim | netul stepfather | stepmother
VA nekisum | neramets stepson | stepdaughter
JJ same as J (Table 7. 1a) stepbrother | stepsister

7.2 Yurok equivalence rules; merging systems. Since X and Y appear
in the kinlists only as parts of A, J or V, Yurok has the non-bifurcate rule
X~Y characteristic of the English system, so that cross-cousins XJY, YIX
are not distinguished from parallel cousins XJX, YJY.

But then we notice a phenomenon quite foreign to English, namely
that all (first non-removed) cousins are merged with siblings; e. g., J~XIX
=XXRXX~XXIXX=XXXXXX~.... In other words J may be inserted or
deleted at will without change of equivalence-class, a phenomenon expressed
algebraically by the equivalence-rule J~I and geometrically by the rule “in
tracing out remain motionless for the chain J.” A system with this rule is
called a merging system. Thus the English system is non-bifurcate and
non-merging, while the Yurok system is non-bifurcate and merging.

There are two apparent difficulties with the merging rule J~I. First it
seems to assign the coverset sibling to ego himself, although nowhere in the
world does ego call himself his own brother. But I is an auxiliary chain,
so that like all other auxiliary chains it remains kintermless, regardless of
the kinclass to which it may be assigned by equivalence-rules (cf. 3. 7).

Secondly, in generation G, the Yurok terminology has special lineal
kinterms nepcets | netseko (father | mother) for the chains X, Y, X, Y, although
by the rule J~I they are equivalent to the collateral chains XJ, YJ, X2JX;
X2JXe, ... (nmetsim | netul); and similarly in G_, there are special lineal
kinterms negnemem | nemehi (son | daughter) for the chains X, ¥, although
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by the rule J~I they are equivalent to the collateral chains JX, J¥, XJXz,
X2JX® ... (nektsum | neramets). In fact, about half of all merging systems
have one or more of these special lineal kinterms, which compel us to make
a supplemental statement in the description of the system and to insert
the lineal terms in parentheses in the kingraph. Thus for the Yurok system
we write J~I except that X##XJ, Y#£YJ, X5#JX, Y5IY and in the kingraph
(Figure 7. 3) we adjoin (f), (m) to the G,-box and (s), (m) to the G_,-box.
For such kinclasses the phrase “focal chain” will be used to refer either to
the lineal focus, e. g. X, or to the shortest collateral chain, e. g., XI.

7.3 Yurok kingraph; the name “generational”. On the basis of the
rules X~Y, J~I the Yurok consanguineal kingraph can be drawn as in
Figure 7.3. Since each generation consists of one kinclass, the system is
called “generational”.

pf | pm

(f) pb | pz (m)

cc

Figure 7.3 Yurok consanguineal kingraph.
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7.4 Description of the Yurok system:; cut-off rules. Since the rules
X~Y, J~I can change a lower turn only into another lower turn, no
affinal chain can be equivalent to any consanguineal chain. Thus a com-
plete description of Yurok must, as in English, include a specific list of the
affinal chains that have a non-empty native coverset. Combining this list
with the chain- and string-coincidences observable in the kinlist gives us the
following description:

i) affinal chains with native coverset: (see Table 4. 1b)
ii) equivalence-rules: X~Y, J~I except that AzAl, A£JA.
iii) chain-coincidences: AzmA+n, A2z An; AJV=AJ, VIA=JA.

Chain-coincidences of the form A=A+, A®=A2+n are called cut-off
rules because they state that no new kinterms are introduced in the genera-
tions above G, or below G., (cf. 1.15). As for the string-coincidences,
they can be stated in the alternative form, adopted from now on, of giving
the generation-patterns (see Chapter Six). Thus the Yurok generation-
patterns are:

20, 1 (fim), 5 (s,d), 2 i

where there is no need to mention a cousin-pattern, since the equivalence-
rules show that cousins are equated with siblings.

7. 5 The Yurok system as a monoid. Since y=x and y=X in Yurok,
this system also, like all non-bifurcate systems, is a monoid on two genera-
tors. Unlike the English system, however, the Yurok system is not the free
monoid (5.4) but has the generating relation xX=i. Consequently, the
elements of the Yurok monoid (Table 7.5) are sequences of the form
XX XXX .- Xx=X7x% with p, ¢=0. 1, 2, 3, ..., since any pair of the form
xX can be deleted.

Corresponding to the fact that special affinal kinterms must be specifically
listed, the affinal Kinterms in Table 7.5 are written with upper-case initial
letters and put in square brackets. In any non-prescriptive system the
affinal kinterms apply only to the focal-chains actually listed for them,
whereas consanguineal kinterms apply to all chains in the kinclass. For
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Table 7.5 The Yurok system as a monoid
Kinclass
i b|z
X (/) pb | pz (m)
bt s|d
X5 2l | pm
R [H, W, VB | VZ, VIV]
XX cc
XXX el | pm
Xxx [ £-in-law | M-in-law]
XXX [S-in-law | D-in-law]
Xxx cc
XXXX ol | pm
EXxx kintermless

example, the gloss pb | pz means that the native coverset netsim | netul applies
not only to the focal chains XJ | YJ but also to all other chains XX,
Y:JY, XeJXe, ... equivalent to XJ and YJ: but the gloss F-in-law | M-in-law

applies only to the chains VX | VY, not the longer chains VXI, VY, v

e. 8., VX is nepareu (F-in-law) but VXI is kintermless.

7.6 Reduction and expansion.

The English equivalence-rules X~Y,

X~Y change neither the height nor the length of a chain, but in Yurok,
with the additional rule J~I, every kinclass contains arbitrarily long chains.

In such a case it is natural to ask:

i) given a long chain, how do we find its kinterm-coverset?

In particular, how do we find the kinterm for the product of

two chains, say for ego’s greatgrandmother’s nephew?

it) for a given coverset how do we find all the corresponding chains?

To answer question i) say for the chain YXYXXY (YXY =greatgrand-

mother, XX ¥ =nephew | niece) we may proceed either with the upper-case

letters X, Y, X, Y and equivalence-signs or with lower-case letters x, v, X
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¢ and equality-signs. In the one case we first cancel XX and then YY,
obtaining YXYXXY~YXYY~YX, so that YX is the desired leading focus,
with the coverset nepits | nekuts. In the other case we obtain an element
in the Yurok two-generator monoid by replacing matriletters (y and ¥)
with patriletters (x and X), whereupon we have XxxxxXX=xxxX=XX, again
with the coverset nepits | nekuts = pf| pm as listed in Table 7.5. There are
two reasons for introducing these lower-case letters and the corresponding
monoid. First, they offer a direct way of comparing one kinship termino-
logy with another; e. g., Yurok with English. Secondly, monoids are binary
systems and the entire subject of pure algebra, with countless applications
in many branches of science, can be defined as the theory of binary systems.
So it is to be expected that our description of kinship terminologies as

binary systems will be useful in the application of results from other
sciences to the study of kinship.

As for question ii), all consanguineal chains with the coverset nepits |
nekuts can be obtained by starting from the 'leading focus XX, inserting
XX as often as desired and changing X to Y and X to Y wherever desired.
The process of shortening down to the principal focus is called reduction
and the reverse process is expansion.

7.7 Lower Burma. Generational systems occur in many parts of the
world. From the consanguineal kinlist for Lower Burma [Brant and Khaing
1951], we can construct the kingraph as in Figure 7.7. The entire consan-
guineal system is then summed up by its equivalence-rules and generation-
patterns.

7.8 Twana. Another generational system is provided by the Twana
Indians in the state of Washington [Gifford 1922]. As may be seen either
from Table 7.8 or Figure 7.8, their system has two unusual features. First,
distinct kinterms extend as far up and down as the fourth generation, with
self-reciprocity or kinterms for pi=c* and pi=ct. Secondly, among ego’s
younger siblings the sibling-pattern does not permit partition either by sex
of referent, since ¢yb=¢yz, or by sex of speaker, since pyz=g¢yz, or by
relative sex of speaker and referent, since yvj (pyz)=ryj (dy2).
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2 i
A pr) ppbippz (pm;
I |
|
|
|
peb|pez
A (f) Pyb[pyz (m)
|
|
|
| eb|ez
: My bipyb |y zlHyz
|
|
|
A : (s) js|id (d)
|
I
|
1-5\2= cc
Al A I A Al
pf: aphou i aphei eb: akou 5: Oa ce: myi
pm: aphwa m: amei ez: ama d: Oami
ppb: phoulei peb: pharji uub: nyi Js: tu
ppz: phwalei pez: jiji dyb: maun Jd: tuma
pub: ulei nyz: hnama
puz: dolei dyz: nyima

Generation patterns: 47, 2 (/, m), 5 (s, d), 2 (ppb, ppz), 1.

Figure 7.7 Lower Burma System.
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Table 7.8 Twana Consanguineal Kinlist
Strings kgxﬂttei:rgs Field-worker’s description Glosses
A bad | skoi  father | mother flm
A bada child ¢
Jep, A"JArep teat elder brother and elder non-removed eb
n=1,2 3, male cousins, first, second, etc.
£y, nA"JAYu sukwai male speaker’s younger brother and ub
younger non-removed male cousins
uludp, $lu, alic male speaker’s younger sister and LYz=uj
LAMTARY younger non-removed female cousins
SA"JA™Y female speaker’s younger siblings and
younger non-removed cousins
Jeg, A"JA%ed feac elder sister and ez
elder non-removed female cousins
Alg, A AL kasi uncle and pb
male cousins once-removed-up
Alp, A" A teap aunt and pz
female cousins once-removed-up
2IA, pATJAH! slualac male speaker’s nephew | niece and Lje
cousins once-removed-down
SJA, pArJA"T! stalal female speaker’s nephew | niece and Pje
cousins once-removed-down
AX, A"JA"u sila grandfather and Bf
male cousins twice-removed-up
AY, A*JA ¢ kaya grandmother and pm
female cousins twice-removed-up
AP, A"JA? ibats grandchildren and c*
cousins twice-removed-down
Al AY ATAN tcabagw grandgrandparents and -children and pl=c
ArJAr all cousins three-times removed
A, Av, AmtA", 1supiagw greatgreatgrandparents and -children and p'=¢t

ArJA R+

all cousins four-times-removed
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1
1
]
A!' Ph (= cl’)
:
|
A3 pl(=éd)
!
|
AZ pf‘ pm
1
]
I
A+ () pb|pz (m)
1
]
|
eb | ez

Hyb, Wyz =dyj
|
|

At (o) wiefsic (o)
!
L
E\Z: c?
|
i
|
3. c3(=P3J
I
|
]
RL‘: ":LI (=PA)

Generation patterns: 40 (irregular), 1 (f, m), 7, 2, 1.
Figure 7.8 Twana Consanguineal Kingraph.
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CHAPTER VIII

Morgan’s Theories on Marriage
and Terminology

8.1 Children of ego’s cross-cousins in Semeca and Tamil. We have
now examined one system (English) that is non-bifurcate and non-merging,
and three (Yurok, Lower Burma, and Twana) that are non-bifurcate and
merging. From now on all systems considered will be bifurcate-merging,
i.e, they will have J~I but X+Y. We begin with two such systems,
Seneca of Iroquois type in northeastern U.S.A. (Chapter Nine) and Tamil
of Dravidian type in South India (Chapter Ten). These systems are of
outstanding interest in the history of kinship theory because of Morgan’s
attitude toward them.

Although we shall find that in fact they are radically different from
each other, Morgan considered them to be identical except for one detail,
which he dismissed as puzzling but non-significant. It concerns the kinterms
used by a male speaker for the children of his cross-cousins, about which
Morgan writes (p. 482):

...among the Dravidian nations...of South India...all the children of my
male cousins, myself a male, are my nephews and nieces: and all the
children of my female cousins are my sons and daughters. ...In the
Ganowanian [i.e. Amerindian] family this classification is reversed: the
children of my male cousins, myself a male, are my sons and daughters,
and of my female cousins are my nephews and nieces.

When Morgan speaks here of brothers and sisters he means all those
relatives, e. g., parallel cousins, who go by the same kinterms as €go’s own
sons and daughters, and when he speaks of cowsin he means only those

71
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cousins who go by different kinterms from sons and daughters, namely ego’s
cross-cousins. Similarly, when he speaks of sons and daughters, he includes
all those relatives who go by the same kinterms as ego’s own sons and
daughters, e. g., ego’s parallel nephews and nieces (children of ego’s same-sex
siblings), and when he speaks of nephews and nieces he means only those
who go by different kinterms, namely children of ego’s opposite-sex siblings.
(Cf. our 2.2 on the actual and classificatory convention.)
So in our terminology Morgan is stating that for Tamil:

uBIAR~IY: ppise=pjs | pid  (marumakan | marumakal),
but

pAJAY ~X:  ppide= s|d (makan | makal),
whereas for Seneca:

pAIAR~X:  ppise= s|d (haahwuk | kaahwuk),
but

pAIAY ~IY: ppide=pjs | wid  (hayawanda | kayawanda).

This difference is dismissed by Morgan with the remark: “it is a
singular fact that the deviation upon these relationships is the only one of
any importance between the Tamil and the Seneca-Iroquois, which in all
probability has a logical explanation of some kind.” [For the explanation
see 10, 3].

As will be seen in the next chapter, Morgan is far from correct in
saying that this deviation is the only difference between Seneca and Tamil,
and in fact on p. 390 he himself states: “it will be observed that in the
Tamilian system [but not in Seneca] the terms for nephew and niece are
used for son-in-law and daughter-in-law as well” (10.5). But our present
interest is to discover why he was so uncritically eager to argue that the
two systems are identical.

Morgan believed that similarity in kinship terminology was a strong
indication of common racial origin, and that his kinship tables therefore
provided “a new instrument in ethnology”. For this reason he was eager
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to prove the identity of Seneca and Tamil systems in view of “the great
importance for the general history of mankind of establishing the Asiatic
origin of the Ganowanian family”. In an eloquent passage (p. 508) he
writes:
- .. this conclusion. .. will furnish an additional illustration of the toilsome
processes by which we strive to discover hidden truths when they lie open
before us in the pathway upon which we tread. Although separated from
each other by continents in space, and unnumbered ages in time, the
Tamilian Indian of the Eastern hemisphere, and the Seneca Indian of the
Western, as they severally address their kinsmen by the conventional rela-
tionships established in the primitive ages, daily proclaim their direct descent
from a once common household. When the discoverers of the New World
bestowed upon its inhabitants the name of Indians, under the impression
that they had reached the Indies, they little suspected that children of the

same original family, although upon a different continent, stood before
them. By a singular coincidence error was truth.

Let us now examine the value of Morgan’s evidence for this poignant
conclusion.

8.2 Classificatory and descriptive terminologies. Morgan distinguishes
two basic types of kinship terminology, to which he gives the names Classi-
ficatory and Descriptive. In essence, the difference between them lies in the
presence (classificatory type) or absence (descriptive type) of the merging
rule, but the concept “merging rule” is of later origin and Morgan defines
the difference only in a rather vague way in terms of overlap between
lineal and collateral lines. On p. 143 he writes:

...in the classificatory systems consanguinei are...arranged into great
classes or categories...for example, my father’s brother’s son is my brother;
...the son of this collateral brother and the son of my own brother are
both my sons...the principle of classification is carried to every person in
the several collateral lines, near and remote, in such a manner as to include
them all in the several great classes.

So the name “classificatory” is reasonable for Morgan’s first type. But
then the second type should go by some such name as “individualizing”,
since in English, for example, the term father refers only to one kintype,
the term uncle to only two (FB and MB), etc. In other words, in a classi-
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ficatory system the kinclasses are generally large and in a descriptive system
they are small. Why then did Morgan use the name “descriptive” instead
of say “individualizing”?

His choice of this name is determined, not by the recurrence of kintypes
in large or small kinclasses, but by the linguistic form of the kinterms. For
example, the English kinterm grandmother is descriptive of the corresponding
relation in the sense that it consists of two parts, grand and mother, such
that if we know the meaning of each part we can deduce the meaning of
the whole term, whereas the Twana term kaya (grandmother) is a one-part
word with no meaningful smaller parts that can themselves be independent
words. For meaningful parts of this sort twentieth-century linguists have
invented the term lexeme, defined by Webster as “a meaningful speech form
that is part of the vocabulary of a language”. Thus the word grandmother
is bilexemic, but kaya is monolexemic. Similarly, Norwegian has bilexemic
terms like farbror (father’s brother) and old Erse, together with its attempt-
ed revival in present-day Ireland, is completely descriptive in the sense that
all other kinterms are expressed by the lexemes for the six primary relations
F, M, B, Z, S, D; e.g. fb is drihar m’ahar (brother of my father).

So Morgan divides kinship systems into two classes on the basis of two
different logical principles, since “classificatory” refers to the manner of
assembling kintypes into kinclasses and “descriptive” refers to the linguistic
properties of the kinterms. Such a dichotomy would be acceptable, though
logically displeasing, if all classificatory systems were in fact monolexemic
and all individualizing systems were polylexemic. But in fact most indivi-
dualizing systems, e. g. modern English, include several monolexemic terms
like uncle, aunt, etc. in contrast to grandfather, son-in-law, stepmother, etc.
Morgan explains such terms as later importations into an otherwise descrip-
tive terminology; e.g. OIld English does not have the terms uncle or aunt,
which are borrowings through French from the Latin avunculus and amita.
But there are too many “intrusions” of this sort, in too many different
languages, to be due to mere borrowing. Consequently, Morgan’s supposed
dichotomy has now been abandoned.

8.3 Morgan’s theories on the history of marriage, Morgan accounted
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for his dichotomy of kinship terminologies by his theories about the history
of marriage.

In Morgan’s day thinkers in every field were greatly influenced by the
publication in 1859 of Darwin’s Origin of Species. For example, the philo-
sopher Herbert Spencer, in his Principles of Biology (1864-67) and Principles
of Sociology (1876-96), argued that evolution of every type began in a
stage of "undifferentiated homogeneity” so that, in particular, human societies
developed from “undifferentiated hordes”. With his customary ebullient
enthusiasm Morgan extended these ideas to the evolution of human marriage,
which developed, according to Morgan, from a stage of undifferentiated
sexual promiscuity with a correspondingly simple kinship terminology, con-
sisting perhaps of the simple term kinsman.

In order to account for the generational system of kinship terminology
he assumed a second state of “intermarriage between brothers and sisters”,
but not between parents and children, thus introducing the idea of a
“generation”. He argues (p. 483) that at this stage

...the children of my brothers are my children. Reason. I cohabit with all
my brothers’ wives... As it would be impossible to discriminate my
children from those of my brothers, if I call any one my child I must call
them all my children. One is as likely to be mine as another.

The third stage in kinship terminology, according to Morgan, is the
“classificatory” system as in Seneca and Tamil, with f=fb=mb, i.e. with a
distinction between father’s side and mother’s side, corresponding to a tribal
organization into clans. To account for such a terminology Morgan assumed
that growing awareness of the disadvantages of close intermarriage, e. g.
the lack of defence alliances with other groups, led to a reformatory move-
ment that broke up the intermarriages of brothers and sisters and thereby
produced exogamous clans, since brothers and sisters are necessarily in the
same clan, whether the clan is patrilineal or matrilineal.

This clan system was particularly suitable, Morgan says, for a stage of
society in which vengeance for murder or other crimes was the responsibility
not of the whole state, as in modern times, but of the clan, whose solidarity
it was therefore desirable to perpetuate by retaining identical kinterms for
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father and uncle or sons and nephews, i.e. by creating a classificatory
terminology.

Finally, the advance of civilization, with state justice and extensive
private property, led to monogamous marriage, with two-parent families
and a descriptive kinship terminology resulting from a desire to distinguish
carefully between ego’s direct heirs, i.e. his sons, and other male relatives
in the generation below ego, e. g. ego’s nephews.

Present-day anthropologists, however, consider that Morgan’s evolutionary
theories are quite wrong. The family is in fact older and much more
widely distributed than the clan, and there is no correlation between the
family system and advanced civilization, as measured say by property or
food production, or by metallurgical and artistic skill. The basic argument
against Morgan’s theories is vividly stated by Lowie [1961, p. 58]:

Morgan argues that the maternal uncles were called by the same name as
the fathers because all were fathers in the sense of having free access to
their sisters... The really fundamental error. .. lies in Morgan’s assumption
that a native term translated ‘father’ is synonymous in the native mind
with ‘procreator’. He cannot conceive that a Hawaiian could ever have
called the maternal uncle ‘father’ unless at one time the uncle cohabited
with his sister and was thus a possible procreator of her children. But this
is to misunderstand the evidence, which does not teach us that the mother’s
brother is called father but that both mother’s brother and father are
designated by a common term not strictly corresponding to any in our lan-
guage... His assumption leads to nonsensical consequences...the theory
that all "fathers” are potential begetters involves the parallel that “mothers”,
whom a Hawaiian reckons up by dozens, are believed to have all conceived
and borne him.

8.4 Reasons for studying Morgan’s work. At this point the reader
may well ask: if Morgan’s theories are so manifestly wrong, why have we
described them at all? We have at least two reasons: first, all students
of kinship eventually acquire a kind of filial piety towards Morgan. He is
the original and still outstanding figure in their science, which he created
suddenly and single-handedly, like Athena from the head of Zeus. His lists
contain the longer collateral chains, like FFZD, that often cannot be found
elsewhere and are nevertheless essential for an understanding for the
structure of a given system. He was revered among the Seneca Indians, with
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whom he lived for extended periods, being honored in 1847 by membership
in their Hawk clan and a suitable six-syllable name. His notable book
The League of the Iroquois (1851) shows him to be an able and sympathetic
observer of Amerindian institutions and customs. His list of the Seneca
kinterms, collected by himself for more than 200 kintypes, is free of errors
in contrast to similar lists obtained from informants in India and elsewhere,
and it would be a great service to anthropology if his Systems . . . were to
be published in re-arranged form (see e.g., 8.6). As for his wide-ranging
theories of marriage and social development, although they have been
abandoned they have not been replaced by other theories of even remotely
similar scope. His industry and enthusiasm, if not his boldness, remain an
exemplar for his successors.

Our second reason is more practical. We wish to present the Seneca
and Tamil systems side by side, just as Morgan did, not with his idea of
emphasizing their similarities, but to make clear they are representatives of
two fundamentally distinct types, Iroquois and Dravidian, which have been
misunderstood for a century. With these motivations in mind, let us begin
with a brief summary of Morgan’s immense, six-hundred-page book Systems
of Consanguinity and Affinity in the Human Family.

8.5 Summary of Morgan’s Systems...; Linguistic questions. Morgan
divides his book into three parts, labeled

Part I, Descriptive: Aryan, Semitic, Uralian
Part 1I, Classificatory: Ganowanian
Part III, Classificatory: Turanian and Malayan

Let us see why he chose these labels, beginning with the word “Aryan”,

During the years 1846-1870, while Morgan was at work on his book,
one of the great scientific achievements of the nineteenth century was
reaching its peak, namely formulation of the relationship among the hundred-
odd languages called Aryan, an achievement popularized by Miiller [1861,
1863], whom Morgan frequently quoted. The situation may be summarized
as follows.

About 2500 B.C. speakers of the original Aryan (or Indo-European)
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language began to spread from their original homeland, perhaps in south-
central Russia, eastward into Persia and India, northward into the valley of
the Volga, westward into central Europe, southward into the peninsulas of
Greece and Italy, and elsewhere. In each case the invading language
displaced the indigenous languages, and itself developed in various ways,
becoming Sanskrit in India, Proto-Slavic in the Volga region, Proto-Germanic
in central Europe, Greek and Latin in Greece and Italy, and so forth.
Then at various later periods these daughter-languages produced grand-
daughters, the modern Indo-European languages of India and Europe. Thus
English, German, Dutch, etc. are daughters of Proto-Germanic; Italian,
French, Spanish, etc. are daughters of Latin; Russian, Polish, Bulgarian, etc.
are daughters of Proto-Slavic; and Hindi, Bengali, Gujarati, and Marathi in
north and central India are daughters of Sanskrit. But the Dravidian (non-
Aryan) languages, Tamil, Telegu, Kanarese, etc. in southern India remained
relatively unaffected, except for importation of Sanskrit vocabulary. For
the reasons discussed below, Morgan differed from the scientific linguists,
both of his own time and of ours, in asserting that, like the Dravidian
languages in the south, the four languages Hindi, Bengali, Gujarati, and
Marathi in the north and central parts of India were non-Aryan in origin.

Morgan’s kinlists in Part I begin with the four Semitic languages
available to him, namely classical Hebrew, two forms of Arabic (one of
them spoken by Lebanese Christians) and Aramaic. All four are of pro-
nounced descriptive type.

Then follow thirty Indo-European languages, including English but not
the four above-mentioned languages of north and central India, which
Morgan puts appear in Part III (see below).

Under Uralian, the final heading in Part I, Morgan includes two forms
of Turkish and three Ugrian languages: Hungarian, Finnish and Estonian.
In putting the Turkish languages under this heading Morgan is in disagree-
ment both with modern linguists, who call them Altaic, and with some of
the linguists of his own day, who called them Turanian. Morgan himself
says (p. 385) "“so material an innovation upon the Turanian family... has
not been made without hesitation and solicitude.” His motive for the
action, and the reason for his hesitation, are examined below under the
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heading Turanian,

The name Ganowanian for the languages in Part II was invented by
Morgan himself, who explains (p. 131) that it is a compound from Gano,
an arrow, and Waano, a bow, taken from the Seneca dialect of the Iroquois
language and intended to include all the Amerindian languages. But modern
linguists have divided these languages into at least five families and have
therefore abandoned the term Ganowanian. Morgan gives the kinlists for
72 Amerindian languages, together with three Eskimo languages, which
(again against modern practice) he calls Tungusian, remarking on the
considerable independent evidence that the American Eskimos originally
came from Asia. For the actual Tungusic languages in northern Asia, e. g.
Manchurian and Evenki, Morgan was unable to obtain kinlists.

Part I1I, labeled Turanian and Malayan, itself has four parts; namely
Chapters One through Three, Chapter Four, Chapter Five and Chapter Six.
The second of these four parts, namely Chapter Four is called Unclassified
Asiatic Nations and contains Burmese and the Karen languages of Burma.
Chapter Five, called Malayan, includes six systems from the Pacific Islands,
all of generational type. The final Chapter Six presents Morgan’s general
conclusions, applicable to the entire book. As for the first three chapters,
they all have the label “Turanian”, being devoted respectively to the Dra-
vidian systems mentioned above (Tamil, Telegu and Kanarese), to the Indo-
European languages available to Morgan from India, namely Hindi, Bengali,
Gujarati, and Marathi, and finally, in Chapter Three, to the Chinese and
Japanese systems. Morgan’s statements in these three chapters are in dis-
agreement with generally received opinion in many respects, two of which
require our particular notice.

First, although it had already been proved, see e. g. Bopp [1833-1849,]
that the four languages Hindi, Bengali, Gujarati, and Marathi are Aryan
in origin, i. e. that they are descendants of Sanskrit, some of the missionaries
from whom Morgan obtained his kinlists maintained the opposite view as
late as 1870, at which time Morgan writes (p. 399):

... when the Sanskrit branch of the Aryan family entered India, the Sanskrit
vocables [vocabulary] overwhelmed the primitive language to such an
extent that Hindi and Bengali, and other dialects of this language...are
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still placed in the Aryan family of languages; although by the true criterion
of classification, that of grammatical structure, they are not admissible into
this connection since most oriental scholars concur [here Morgan misstates
the case] in representing it [i.e., the grammatical structure] to be that of
the aboriginal speech.

But modern opinion holds that by any valid criterion—and everyone
agrees on the primacy of grammatical structure—Hindi, Bengali, etc. belong
to the Aryan family. Why then did Morgan choose the wrong side in this
debate?

The answer, see below, is the same as for a second question: why
does Morgan’s use of the word “Turanian” admit none of the languages
(Tungusic, Mongolian, Turkic, Malayan) assigned to that heading by Miiller,
and also none of those assigned by modern scholars (namely, the languages
spoken in the five Turkestan areas), and yet does contain a remarkable
assortment of other languages, namely Dravidian, Indo-European (the four
Hindi, Bengali, etc.), and (tentatively) Chinese and Japanese?

The answer to both questions lies in the fact that with the enthusiasm
of a pioneer Morgan believes in a close connection between kinship termi-
nology, on the one hand, and language-affiliation and social institutions, on
the other. As we have seen above, he believes that a classificatory termi-
nology implies an earlier stage in the evolution of marriage and must
therefore precede a descriptive terminology. Descriptive languages can be
descendants of classificatory ones but not vice versa. Hindi, Bengali, etc.
are classificatory (9.6) but Sanskrit is descriptive. Consequently, Morgan
sides with those missionaries who claim, mistaking the linguistic evidence,
that Hindi, Bengali, etc. are not descended from Sanskrit but are pre-Aryan
in origin. Similarly he asserts, this time correctly but for a wrong reason,
that the Dravidian languages, with classificatory terminology, are not to be
grouped with the Turkish languages, which have a descriptive terminology,
although he expresses this opinion with considerable reluctance, since it
involves disagreement with Miiller, whose Lectures on the Science of Language
he otherwise accepts as a guide.

But present-day anthropologists are much more cautious about accepting
correlation between Kinship terminology and social institutions or linguistic
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affiliations.  Classificatory and descriptive terminologies are in any case
vaguely defined, and nothing prevents either of them from developing
toward the other.

8.6 Explanation for the neglect of Morgan’s lists. Lounsbury [1964a]
expressed his surprise that Morgan’s mistake of identifying the two basically
different Iroquois and Dravidian types had gone unnoticed for almost a
hundred years, The real principle operative in an Iroquois-type kinship
system was discovered by Lounsbury on looking through Morgan’s kinlists
in 1954-55. He wrote [1079]: it was contrary to

all of the expectations to which we had been led by the anthropological
theoretical writings on the subject. It is surprising that the essential data
pertinent to a subject about which so much has been written should have
been in print and available to all for nearly a century without anyone's
having taken account of the classification of any but the closest collateral
kintypes. The classic theory predicts correctly only to the immediate
(closest) uncles and aunts [FB, MB, FZ, MZ] and first cousins. Beyond
this its predictions are half right and half wrong,

There do exist systems which classify kintypes in the way that the
Iroquois type was imagined to. These are the "Dravidian” type of systems.
They are...founded...on a mode of reckoning...that, unlike the Iroquois,
takes account of the sexes of all intervening links. The Dravidian and Iro-
quois types are rarely distinguished in anthropological literature, all passing
under the label "Iroquois type”. Actually, they are systems premised on
very different principles of reckoning, and deriving from social structures
that are fundamentally unlike.

There have been many reasons for this neglect of Morgan’s lists. They
are incomplete because of the difficulties of communication in his day; in
particular, they do not include Africa (except for one tribe), Australia,
South America, the Tungus peoples in northern Asia, or the Indian tribes
in western United States, although subsequently California has become
especially important for Amerindian kinship studies. Linguistic opinion has
always been against many of Morgan’s classifications of languages. His
distinction between descriptive and classificatory systems and his consequent
theories on the history of marriage have been discredited, and he neglects
the effect of prescribed marriage on kinship teminology, thereby overlooking
important differences between the Iroguois and Dravidian systems. But
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perhaps most important is the purely practical reason that in his desire to
present all of his 139 systems together he has adopted an arrangement of
the data that is extremely inconvenient for the study of any one system.
For each of the 98 classificatory kinship systems in Parts II and III he lists
268 kintypes, always in prolix unabbreviated language, beginning with “my
great grandfather’s father” (A?X?), column 1, through such types as “my
father’s father’s father’s sister’s daughter’s daughter’s daughter’s daughter”,
male speaking, (pX2JY*¢)”, and ending with “twins” in column 268. Since
there are only 34 Seneca kinterms altogether (19 consanguineal and 15
affinal), each kinterm occurs in several columns. For example, haahwuk=
son, occurs in 17 columns (A, pIXp, «--, ¢Y2I ¥4y, see 9.1), so that for
our study of recurrences of the term haahwuk, we must painstakingly
collect the data from all 17 columns. Finally, to indicate how Morgan
might have profited from a more concise notation let us note that he but-
tresses his argument for the supposed identity of Seneca and Tamil with
nine examples of the following kind:

...the relationship to each other of the daughter of the daughter of the
daughter of a brother and the daughter of the daughter of the daughter of
the brother’s sister is the same in the two systems.

In our subsequent chapters let us try to make amends for this unfilial
and costly neglect of Morgan’s kinlists by removing some of its causes.



CHAPTER IX

The Iroquois Type

9.1 Seneca consanguineal kinlist. Morgan’s information about Seneca
consanguineal kinterms in the five central generations can be arranged as
in Table 9. la:

Table 9.1a Seneca consanguineal kinterms from Morgan

Glosses Native kinterms Strings
gf | gm : hocsote | ocsote P AX, AY, XL YT, XUORp, XY, YRy,
YYg

flfz hanih | ahgahue - X, XJ, XX p, X2V, XIR2p, X0V
mb|m hocnoseh | noyeh : Y, YI, YRy, YOV, YIR2p, YOIV
EbI_E‘E_ * - hﬂ]:ﬁ_l_&'_{ljg . 2TY2 2 2 R e ] 4 3
T vE | Nive | Kass : J, XIR, YIX, XUIRE eI, XerRe, Yoy

pie ahgareseh : o XJY, YIR, XU, YRy XY, yuke

s|d haahwuk | kaahwuk : A, pIX, ¢J¥, pXIR?, ¢XIRY, uXIYX,

#XIVY, 4YR?, $YIRY, 4YIER, $YIT?,
aXAIXE, ¢XPIYP, pYRIRY, SYTYS, uXiOR,
LY IXY, )Y

uzs | pzd:  hayawanda | kayawanda:  pJ¥, pXIRY, X1V, wYIRY, nYIY?,
LXAYS pYR)ye

dbs | ¢pbd : hasoneh | kasoneh  :  $IXR, ¢XIR?, SXITYR, #YIR?, #YIYR,
PXUIRE, SYIR?
es |ed ¢ hayada | kayada :  A? AA® A’A°, ---

Here we have given only the kintypes actually listed by Morgan, but
his incidental statements show that the entire consanguineal system can be
described as Table 9. 1b.
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Table 9. 1b Complete Seneca consanguineal system

Glosses Native Kinterms Kinstrings Range
pf| pm hoesote | ocsote AremeayAn G, and higher
AL hanih | ahgahue X, XA"JA" G, starting with X
mb | m hocnoseh | noyeh Y, YA"JA" G, starting with Y
eb|ez _haje | ahje 1, AA"JA"A G, starting and end-
wh | vz haga | kaga ing with X and X
or with Y and ¥
ﬁjc ahgareseh ?\A”’Jﬁ."‘/i (s, starting and end-
ing with X and ¥
or with Y and X
s|d haahwuk | kaahwuk &ATARA G_;, ending in X for

pzp | pzd || $zs | dzd ]
hayawanda|kayawanda || hasoneh|kasoneh &A"JA™A

cs | ed

hayada | kayada

AmJA!-rm-pu

male ego, in Y for
female ego

Gy, ending in Y for
male ego, in X for
female ego

G_; and lower

9.2 Affinal kinterms in Seneca.

Seneca has an impressive list of affinal

kinterms (Table 9.2) with no significant affinal-consanguineal overlap. As
we may therefore expect (2.6), the Seneca tribe does not have prescribed
marriage, so that in Figure 9.4 there is no collateral path from the X-box

to the Y-box.

Table 9.2 Seneca affinal kinterms from Morgan

kpf | hpm
wpf | wpm
hf | hm
wp
fzh | fow
mzh | mbw
jy Spzh | pebw
v (=h|w
cv (=dh | sw)

hagasa | engasa
hocsote | ocsote
hagasa | ongasa
ocnahose
hocnoese | ocnoese
hocnoese | ahganiah
ahgeaneo § hayao | ahgeahneah
dayakene
ocnahose | kasa

HAX | HAY, (H=YX)
WAX | WAY, (W=XY)

HX | HY

WA

XJH | XIwW

YIH | YIW

pIH~gIJW GIH | pJW
V (=H| W)

AV | AV
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9.3 Seneca equivalence-rules. We note that parallel cousins are
coverset-equivalent to siblings, so that Seneca is a merging system with the
equivalence-rule J~I. We also note that fh==mb, so that Seneca is bifurcate
and in fact, as was stated in 8.1, all the systems considered in the rest of
the book will be “bifurcate-merging”.

Seneca also has the property that patrilateral cross-cousins XJY are
coverset-equivalent to matrilateral YJX, giving us a third equivalence-rule
XIY~YIX, and therefore X¥Y~YX. In any merging system the auxiliary
chains XY and YX, which in fact cannot link ego to any alter (3.7), are
nevertheless equivalent to XJY and YJX and may therefore be called
“cross-cousin chains”, being regarded as abbreviations for XJ¥ and YJX.
Similarly, we may write xY for (J¥ (male speaker’s sister’s child) and $X
for ¢pJX (female speaker’s brother’s child) without fear of misunderstanding.

Finally, the fact that in Seneca all chains for f | fz start with X and
all chains for mb | m start with Y gives us the two equivalence-rules XX~
XY and YX~YY, together with their reciprocal XX ~¥YX and XYYV,
A bifurcate-merging system with the rules XY ~YX, XX~XY (XX~TX)
and YX~YY (XY~YY) is said to be of Iroquois type.

9.4 Seneca kingraph. The Seneca consanguineal kingraph can now be
constructed as in Figure 9.4, where the four grandparental chains XX, Xy,
YX, YY, all with the same coverset hocsote | ocsote, must go into two
separate boxes because XX and YX are not coverset-equivalent since they
produce distinct coversets when extended by JX; namely hanih | ahgahuc for
XXJIX and hocnoseh | noyeh for YXJIX.

As an example of reduction and expansion in Seneca consider the
problem of finding the kinterm for the string xXYXXY¥X¢ (male speaker’s
second-cousin-once-removed-female). Algebraically, we have

XYXXYYX~XYYYX by the rule XX ~I
~X¥YX by the rule YY~I
XXX by the rule YX~XX
~X by the rule XX~.I,

so that the desired kinterm kaahwuk is given by X¢=/XJé (see Table 9, la),
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Geometrically, the same result may be traced-out immediately on

Figure 9. 4.

Similarly, Morgan’s two statements about the children of ego’s cross-
cousins in Seneca, namely pXIYX~YIXX (s|d) and pXIY¥YY~pYIXY
(/s | pjd) can now be verified either algebraically from the equivalence-

rules or by tracing-out on Figure 9. 4.

Focl
| !
]
XX, XY pf lpm
|
|
1
X f|fz
g,
\.xf
,..#f i
eb | ez
1 ~yb | vz
g
-
X s|d |[pis[pId
‘.h"ln.
XX, ¥X cs |cd
b 3
=

pflpm

!
|

p}slufd” sl d

1

|

]
cs\cd

T

[

Foci

YX, YY

XY, ¥y

Equivalence-rules: J~I, XX~XY, XR~¥R, YX~YY, R¥~YY, X¥~YX
Generation-patterns: 24, [2 {], 3, 14 (s, d), 2, 2

Figure 9.4 Seneca kingraph.

9.5 Seneca as a monoid. The generating relations for the Sencca
monoid on the four generators x, X, y, ¥ are given by:
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XX=yy=i, Xx=xy, XX=J%, yx=yy, X§=¥¥, xy=yx.

In Table 9.5 the elements of this monoid, i.e. the kinclasses of the Seneca
kinship system, are arranged in dictionary order. Again the affinal expres-
sions MZH, WS, ... must be written in upper-case letters and enclosed in
square brackets as in 7.5,

Table 9.5 The Seneca monoid

Kinclass Gloss Kinclass Gloss
i eb/ub, ezluz XXX kintermless
% Fliz [MZH] XXy kintermless
% s|d| ¢js|pfd [WS|WD] R2x kintermless
y mb | m [FBW] 2RR cc
y eis| pjd \s|d [HS | HD] 334 [SW]
XX Pl pm XXy cs, ce
Xy bie Ryx [WP]
xx kintermless x9x [DH]
XX cs | ed X9y kintermless
Ry W, Iw yxx pl, pm
iy cs | ed FXX [HE, HM]
yX pf | pm 9%y kintermless
gx [H, JH] gyx kintermless
vy kintermless XXXX pl, pm
XXX of | pm : :
xyx [FZH] Ryxx [WPF | WPM]
Xyy [MBW] Ryyx [WPF | WPM]

PAXX [HPF | HPM]

gXyx [HPF | HPM]

9.6 Hindi. The Iroquois type is widespread throughout the world,
with great variety in its generation patterns. In most cases, cross-cousins
are distinguished from siblings, as e. g. in Seneca, but in many systems all
(first non-removed) cousins, patrilateral and matrilateral, are equated with
siblings even though otherwise the two sides of the house, e. g. FB and MB
are sharply distinguished, This chain-coincidence XJY=~YJX=J requires
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pf | pm pf| pm
| |
| !
| ]
(f) fb| fz mb | mz (m)
“‘-._.H /.-'
e
.—""f 1““\
blz blz
"'-\.““H l
|
x""-.. |
bs | bd zs | zd
0, 0 |
L :
cs | cd cs lcd
pf|pm dadal dadi
‘Fb|fz chacha] phupi
mb | mz mama | maus i
flm pita| mata
b|z bhai | bahin
bs | bd bhatija| bhatiji
2s|zd * bhauja| bhauji
s|d beta| beti
cs | cd pota | poti

* ¢zc and ¢fbdc have special terms

Generation patterns: 3, 3(f,m), 14, 2, 2
Figure 9.6 Hindi kingraph,
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the supplemental statement indicated by the [1] for the cousin-pattern (cf.
6. 9) under Figure 9. 6.

Examples are provided by the four Aryan languages in India—Hindi,
Bengali, Gujarati, Marathi—for which Morgan so energetically tried to prove
non-Aryan origin (8.5). Figure 9.6 gives the Hindi system from which
the other three differ only in slight details. If Morgan had asserted complete
similarity between Seneca and Hindi, rather than Seneca and Tamil (8. 1),
he would have been more nearly correct, although his argument for common
ethnological origin would have remained just as unsound.

9.7 The Mbuti pygmies. A widespread feature of kinship systems of
all kinds is lack of sex-discrimination in the lower generations as compared
with the higher; e.g. almost all systems distinguish father from mother but
many do not distinguish son from daughter, and distinction of grandfather
from grandmother is much more common than distinction of grandson from
granddaughter. In a bifurcate system, father’s side is by definition distin-
guished from mother’s side in G,. An example showing just this minimum
necessary distinction for sex of the referent is provided by the Mbuti pygmies
(see Figure 9.7) in the Ituri forest in northeastern Zaire.

Here we have the following information (Ichikawa, 1978) about the
nine consanguineal kinterms of the system.

Table 9.7 Kintypes for the Mbuti Pygmies

Kinterm Kin Glosses
tata ! in G, or higher pp
epa | kula : in G, starting with X [ fz
noko | ema : in G, starting with Y mb | m
namami children of epa or ema J
sono children of noko or kula pjc
miki : in Gy i

mikilimamiki: in G_; or lower cc

From this information we can draw the kingraph and give the generation
patterns as in Figure 9.7.
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PP PP
I |
| [
' |

F|f= mb | m
T
4.-“""-u. - =
>
- S~
- S~
J pic
- - |
i :
[ c
-~ < |
e |
e |
c¢c cc

Generation patterns: 1, [2i], 3, 1, 1, 1.
Figure 9.7 Kingraph for the Mbuti pygmies.

9.8 Shastan, Tolowa, Comanche, Nepal. In order to illustrate how the
entries would appear in our proposed catalog, we now list four more
examples of Iroquois type. Since the type has thus been stated once for
all, there is no need to give the equivalence-rules or to draw the kingraph.
Only the generation-patterns are necessary.

Shastan: 0. [2d1): 3 {fim), I, 13

r
Tolowa: 24, [2iv], 3 (fim), a, 13, 4
Comanche: 1, [1], 3, 2, 13, r
Nepal: 24, [11, 4 (fim), 2, 2, 2



CHAPTER X

The Dravidian Type

10.1 Kinlist for Tamil and Telegu. The Tamil and Telegu systems of
Dravidian type are related to each other in the same way as Seneca and
Ojibwa of Iroquois type (cf. Morgan’s statements 1.4); i e. they differ from
each other only in their partition of cross-cousin strings. Morgan’s infor-
mation about them can be arranged as in Table 10.1. For brevity we
usually refer only to Tamil. The system for Kanarese, the third most
important Dravidian language, is almost the same, though not so completely
reported by Morgan’s missionary informants,

10.2 Tamil-Telegu kingraph. From Table 10. 1 we read off the merging-
rule J~I and the cross-cousin rule XY~YX as in Seneca. Then the fact
that all the chains with coverset f | fz are even (see Table 10.1) and all
those with coverset mb|m are odd gives us the equivalence-rules XX~YY,
XY~YX, together with their reciprocal rules XX~Y¥, ¥YX~XY, in con-
trast to the Seneca rules XX~XY, YX~YY etc., in 9. 3.

From the above we can construct the Tamil-Telegu kingraph as in Figure
10.2. Here the distinction between even and odd chains is geometrically
expressed by the fact that the boxes for even chains are on ego’s side, i.e.
the left column of the figure, while the boxes for odd chains are on the
right side. In other words, an even (odd) chain crosses from one side to
the other an even (odd) number of times, while in the Seneca kingraph
(Figure 9.4) this statement is no longer valid for chains rising beyond the
generation G,.

97



FOUNDATIONS OF KINSHIP MATHEMATICS
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XX, YY pf | pm pf | pm XY, YX
.
"‘-.x.-"
f‘-“‘ b
X f fz mb m Y
-““"-. -
-
.--’ e
eb | ez Mx| Y4 ¢"'. XV X
1 b [ vz Hpis|HPJQ|l¢p]c s
'-.H.-'f
- S
- s
X s|a |s]3e Js|id| s |4 7
bl .-"’
SR
3(3(, YY cs | cd cs | cd \7;(.3(\-'
~ -

Generation patterns 24 [2 vii for Tamil, 2 v for Telegu], 3, 5, 2, 2

Figure 10. 2 Tamil-Telegu kingraph.

10.3 Contrast between Seneca and Tamil. Let us now examine what
Lounsbury (8.6) calls “the classic theory”, namely that, as Morgan asserted,
Seneca is essentially identical with Tamil. We shall find that when Tamil
rules are applied to the Seneca system the predictions are correct, as
Lounsbury says, “only for immediate uncles and aunts and first cousins.
Beyond this they are half right and half wrong.”

Both Seneca, with the rules XX~XY, YX~YY, and Tamil, with the
rules XX~YY, XY~YX, are bifurcate in the sense that in generation G,
they both have XJ+YJ, but for Seneca, in contrast to Tamil, the bifurcation,
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i. e. the distinction between chains beginning with X and chains beginning
with Y, continues throughout all the higher generations.

Consider the two chains, XYX and XYY, rising into the third generation.
In Seneca these two chains are equivalent because they both begin with X
and in Tamil they are inequivalent because XYX is odd and XYY is even.
Let us now adjoin any descending chain, say X¥, so as to bring these chains
down into G;. Then in Seneca the two chains, XYXXY and XYYXY, will
have the same coverset f | fz (Figure 9.4), but in Tamil they will have
distinct coversets; namely f | fz for XYXXY but mb | m for XYYXY (Figure
10. 2). For chains rising beyond G,, the predictions for Seneca based on
Tamil rules are correct in half the cases, namely those in which the chain
in question is even, and wrong in the other half.

10. 4 Six further examples of Dravidian type. As we shall soon see,
the difference between Seneca and Tamil runs much deeper than might be
expected from this single illustration. As Lounsbury says: the two systems
derive from social structures that are fundamentally unlike.

In the meantime let us give six further examples of systems of Dravidian
type. Again only the generation patterns are necessary (cf. 9.8) and will
be given in our proposed catalog.

Moala: 2, [2 viii], 3, T 2 1
Piaroa: 24, [2 vi], 3, 9 2 2
Garo: 24, [2 vi], 4 (f,m), 5 13, 4
Byansi: 24, [2 vi], 4 (f, m), 5, 13, 4
Nasioi: 24, [2 vi], 3, 5 2, 1
Xingu Carib: 24, [2 1], 33 8v i

10. 5 Bilateral cross-cousin prescribed marriage in Tamil. The field-
workers inform us independently of kinship terminology that Seneca
practices non-prescribed marriage and Tamil practices bilateral cross-cousin
marriage. From our formalist point of view we shall wish to see what
evidence we can find for these marriage practices in the terminologies alone.
For Seneca the question has already been dealt with in 2,6. As for Tamil
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it was mentioned there that the paucity of special affinal kinterms (kanavan
=husband and mainaivi=wife) already gives some indication of prescribed
marriage and that this indication will be strengthened by a strong overlap
between consanguineal and affinal terms. In Tamil the recorded overlap is
truly impressive (Table 10.5), all of it indicating bilateral cross-cousin
marriage.

Finally, the best evidence for this type of prescribed marriage is afforded
by the consanguineal terminology itself. In our formal notation the four
criteria listed in 2. 6 become: XK~Y, YK~X, KX~¥, KY~X, where the
chain K is collateral. Then bilateral cross-cousin is established for Tamil
by the fact that these criteria are satisfied both for K=XY and K=YX.
For we have

XK~Y: since  tay=fpjd (XXY$~XYRX$)=mother (Y)
YR~X: since maman=mpjs (YXYu~YYXy)=father (X)
KX~Y: since makan | makal=¢pjs | ppjd ($YXX~¢XTIX)=gs | ¢d ()
KY~X: since makan | makal=ppjs | ppjd (pXI¥~pYXY)=ps | pd (X).

Geometrically expressed each of the collateral paths YX and XY leads
from the X-box to the Y-box (Figure 10. 2).

On the other hand, the Murngin terminology (16.3) indicates matrilateral
cross-cousin marriage, i.e. with MBD but not FZD; for there we have (cf.
2.6 and see Figure):

arndi=fmbd (XYIX¢)=m but frzd (XXIY¢)=waku #=m
bapa=mfzs (YXI¥p)=r but mmbs (YYIXp)=mari-elker +f

and reciprocally:

waku=gfzsc (pXI¥X)=dgc  ¢mbsc (pYIXRX)=gawel | arndi + gc
gatu =pmbde (pYIXY)=pc  pfzde (uXIYY)=gurrong o pic

So to the set of equivalence-rules for Tamil we may add H=YX~W=
XY~XY~YX, expressing bilateral cross-cousin marriage. We now wish
to show that such a kinship system forms the kind of mathematical struc-
ture technically known as a “group”.
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CHAPTER XI

The Dravidian and Generational Groups

11. 1 Definition of a group. In 5.1 we stated that a closed binary
system B is a semigroup if its multiplication is associative and that a semi-
group is a monoid if the multiplication has an identity-element, call it i.
We now state that a monoid B is a group if for every element a in B
there is an inverse element, call it @1, in B such that ¢a~'—=a-la—i.

It is clear that no element @ can have two inverses, call them a-! and
ayts#a~'. For then we would have

a~t=artaa-! since a;la=i

=azt since aa~!=i.

Thus in a group every element has exactly one inverse, but in a mere
monoid some elements have one inverse and some have none.

For example, the set B of all integers ..., —3, —2, —1,0,1,2,3, «+-
under addition is a group, with 0 for its identity-element, since for every
integer p there exists in B an integer —p such that PH(=p)+(=p)+p=
0. But under ordinary multiplication this same set % is merely a monoid,
because no integer except +1 has an inverse; e. g. there exists no integer
p such that 2p=1, since B does not include fractions.

Similarly, our dictionary 9 of all words (chains) under concatenation
is only a monoid. For if any non-empty word K, i.e. any word of length
greater than zero, is multiplied by any word at all, the result is at least
as long as K and therefore cannot be the identity-element I, which is of
length zero.

Now let us consider an abstract kinship system, i.e. a quotient D/P
(4.5), where P is a stable partition of ®. This kinship system may be a
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group or may be only a monoid, depending on the nature of its generating
relations, so that we now wish to determine what relations are necessary
and sufficient if the system is to form a group.

Since we are interested only in merging systems, we already have x%=
y¥=i. But these conditions are not sufficient. For example, Seneca is a
merging system that cannot be a group, for the following reason.

11.2 Cancellation in a group, For purposes of computation, i.e. of
utilizing given properties of a kinship system to deduce others, groups are
more serviceable than mere monoids because “cancellation” is always possible
in a group but not always in a monoid, in the sense that if a, b, ¢ are
elements of a group, then from the equation ab=ac or ba=ca we may
cancel the a to obtain a true result b=c.

For in a group we need only multiply by a-! on both sides of ab=ac to
obtain a-!(ab)=(a"la)b=b=a"l(ac)=(a"la)e=ec, so that b=c as desired.
(Note the importance of associativity.) But in a monoid the inverse element
a-! may not exist. For example, in the set B of all integers under ordinary
multiplication we have 0x2=0%x3=0 but 2:3, so that the 0 cannot be
cancelled, the difficulty being that in this monoid the element 0 has no inverse.

Similarly, in the Seneca monoid, cancellation is not always possible. For
example, we have xxj=xyj (both are gf | gm=hocsote | ocsote) but Xj+yj
since f | fz#=mb | m (hanih | ahgahuc = hocnoseh | noyeh; see Table 9. 1a), so
that the initial x cannot be cancelled. In other words, the Seneca system
cannot be a group. In Tamil, on the other hand, cancellation is always
possible; e. g.
xxy=xyX (both are mb | m=maman | tay; see Table 10.1) and
x§=yX% (both are maittunan | maittuni || machchan).

11.3 Necessary and sufficient conditions for a group. In a merging
system we already have xX=yy=i, so that if the elements x and y are to
have inverses at all, these inverses must be the elements % and ¥, which
means that Xx=/ and yy=i. And conversely, any abstract system whose
equivalence-rules include these four: xX=Xx=yy=9yy=/ is necessarily a

group because the inverse k-' of any class of chains k, say k=xyyxX is
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then provided by the reciprocal chain k=xxyy%; for then kk =XyyXRXXYyX
reduces to i by successive steps starting from the center of kk.

From the Tamil equivalence-rules listed above, the two relations %x—
yy=i follow at once. For we have

XX=3Xxyy because yy=i
=Xyx§ because xy=yx
=yXx§ because Xy=yX
=yXyX because xy=yX
=yyxX because Xy=¥x
=i because xX=yy=i.

Consequently, unlike Seneca, the Tamil system is a group.

11. 4 Non-redundant set of generating relations for Tamil. Our list of
generating relations for Tamil has now become

XX=yy=xX=y§=1I, XRy=§x=x§=y&, XX=yy, Xy=yX, ¥X=¥§, Xy=9y%,

where we recall that each of these pairs of lower-case letters represents a
class, e. g. xx={XX}, of chains XX, XXXX, ... that are equivalent to one
another, e. g. XX~YY, under the equivalence-rules of the Tamil system,
and a relation like xx=yy means that xx={XX} and yy={YY} are the
same class.

Then the above set of generating relations, which we may synonymously
refer to as equivalence-relations, is redundant, since some of them can
be deduced from the rest. For example, we have just seen in 11.3 that
the relations Xx=¥yy=i are so deducible. Thus we now wish to eliminate
some of these relations in order to produce a complete, non-redundant set.
We shall find that if we keep intact the four earmarks of a group, namely
Xx=yy=xX=yy=i, and also retain the two relations xy=yx and xx=yy,
we already have a set of relations that implies all the rest.

To begin with, we may omit the relations XX=¥yy and X§=§& reciprocal
to xx=yy and xy=yx. For each of the two classes X% and §§ is inverse
to the class xx=yy, so that the two of them must be the same class, i.e.
we must have XX=Jyy, because every group element, i.e. in this case every
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class in the partition of the set of all chains, has exactly one inverse
(11.1), and similarly for the class X§y=§% inverse to the class xy=yx.

More generally, we made the assumption that if a given kinship
system has the equivalence-rule K~L, where K and L are chains, then it
also has the rule K~L. We now see that if the system is a group, there
is no need to assume this property, since it follows logically from the fact
that in a group every element has exactly one inverse.

Finally, the four relations Xy=yx=x¥=y%X may all be omitted, e. g.

Xy=yyXy since yy=i
=yXyy since FX=X¥

=yX since  Jy=i.
So as a complete non-redundant set of rules for Tamil we have:

Ix=xE=§y=y¥=i, XXx=yy, Xy=yx.

11.5 Commutative groups and MBD-marriage. Since in a group we
have X=x-! and §=y-!, the two letters X and § can be replaced by
negative powers of x and y. Thus every element in the Tamil group can
be expressed as a product of powers (positive, negative or zero) of the
two elements x and y. Consequently, the Tamil system is the group on
two generators, say x and y, with the generating relations xx=xy, Xxy=yx.

Since xy=:yx, this group is commutative; i.e. any product kk’ is equal
to the same product k’k in reverse order. In particular, Xy=yX (cf. the
above proof); or in words, every commutative kinship system has MBD-
marriage (w=Xy=yX=matrilateral cross-cousin). And conversely, every
kinship system with MBD-marriage is a commutative group, a group because
it has prescriptive marriage, and commutative because it can be generated

by % and y with Xy=yX.

11. 6 Kinterms for arbitrarily long affinal chains. The consanguineal
kingraph for a non-prescriptive system, e. g. Figure 9.4 for Seneca, is valid
only for consanguineal chains. For example, tracing-out the two chains
XY and YX, one of which is affinal, would lead us to the wrong conclusion
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that Seneca has MBD-marriage. But the kingraph for a prescriptive system
can be used for chains of any kind.

In 2.10 we agreed that all systems, prescriptive or not, have kinterms
for arbitrarily long consanguineal chains. What then are we to say about
arbitrarily long affinal chains in prescriptive systems? Consider the chain
XIXWYJIYH (cousin’s wife’s cousin’s husband) discussed in 3.1. Certainly
this chain has no native kinterm in English, a non-prescriptive system. But
what about Tamil? Here we find, either by algebraic reduction or by
tracing-out on Figure 10. 2 that the leading focus is XY. Are we then to
conclude that e. g. a Tamilian female speaker would apply the corresponding
kinterm pjs=machchan to such a distant relative? Or in Murngin we find,
e. g. tracing-out on Figure 16.3b that the leading focus is J, with the kinterm
eb=wawa. Would ego then apply the kinterm “elder brother” to this
remote relative?

Here we encounter the same lack of a definite stopping-place as with
consanguineal relations in 2. 10, and again we simply assume that a chain
of any length will go by the same kinterm as its focal chain. Again our
actual information varies from tribe to tribe; for example, the Murngin
flatly state that their kinterms are applicable to chains of any length.

11.7 The Tamil system in terms of x and w. We have already seen
that the same group can be defined by various sets of generating relations.
But it can also have various sets of generators. Up to now we have written
the equivalence-rules in terms of X and Y, but for prescriptive systems it is
often convenient to rewrite them in terms of X, X, W, W, as may be done
by replacing Y with XW and ¥ with WX, as in the kingraph in Figure
11.7, where the dotted lines are husband-wife lines or spouse-lines, and W
may be replaced by W, since ego’s wife W and €g0’s sister’s husband are
in the same section.

With this change of generators from x and y to x and w we obtain
the non-redundant set of equivalence-rules

AW=WwWX, Ww=/]

for Tamil, where the four relations XX=XX=Ww=wW=i are implied
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Figure 11.7 Tamil kingraph in terms of }—C, X, W, W.

by our speaking of the system as a group. Since the Dravidian group is
commutative with w?=i, every element of the group, i e. every kinclass of
kinchains for the kinship system, can be uniquely expressed in the form x»®
or x"w, with h positive, negative or zero. For example, consider the chain
xtweEwx., By commutativity we can bring all the patri-letters x and X to
the left, obtaining x®*w®, and then by the rule w:=i, we can write wi=
(w?)*w=w, obtaininng x*w, as desired. Arranging these elements in dic-
tionary order with x preceding w then gives Table 11.7.

11.8 Piro kingraph and kinlist. As an example of a Dravidian system
far removed from South India, consider the kingraph in Figure 11. 8 for the
Piro Indians in eastern Peru.



THE DRAVIDIAN AND GENERATIONAL GROUPS 109

Table 11.7 The Dravidian group

Chains Glosses Chains Glosses
i : ebjyb, ezfyz xh 2| pm
X : Filfz X3 i es | ed
X' s|d|js|jd e pf | pm
W s upis | ppjd || dhjc [h]w] X7'w o cs | ed
X = pf | pm - ol | pm
gl o es | ed X es | cd
XwW oo mb | m >t pl | pm
X'w o sl jd|s|d x™'w : cs | od
pf | pm : atxiru | axiro
P.F pm .............. pf pm f l JZ . uru | Sﬂplﬂ
~ - _ mb|m : ukoxiru | unro
:x : _eb|ez  yehwaklu | yehwaklo
e b ds) vb | yz epuru | epuro
5is | pid: anuru | meknaxiro
f | fz e R s T WA mbi| m 2 l ﬁj . l
sld hituru | hsitso
. o e Js|Jjd : palikleru | paliklero
P e = 55 | dd @ mekahin | mekahio
eb | ez Ay
| oo S 5 d
Ve pJs | pJ
S -
S -
- o e
- )
s|d“j5ljd .............. jgljd’s_ld
T -
ey -
- % T
i -
cs cd  frereeeereenn cs | ed

Generation patterns: 24, [2 ii], 3, 5, 2, 2.

Figure 11. 8 Piro kingraph and kinlist.
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11.9 The Taromak-Rukai kinlist The generational systems described
in Chapter Seven are non-prescriptive. But there also exist generational
prescriptive systems. We choose an example taken from the aboriginal
village of Taromak-Rukai on the southeast coast of Taiwan, where the
field-worker collected his data (Table 11.9) in 1963, just six years before the
village was destroyed by a typhoon and the resulting fire.

Table 11. 9 Taromak-Rukai Kinlist

Chains Native kinterms Field-worker’s description

A", AR naumo FF, MF, FFB, MFB, FFF, FFFB etc.

A", A"J kaingo FM, MM, FMZ, MMZ, MMM, MMMZ
etc.

A, Al, AIV, VA nama F, FB, MB, FZH, MZH, HF, WF

A, AJ, AIV, VA naina M, FZ, MZ, FBW, MBW, HM, WM

J, AJA, Au.gi*, AYA®  rtakajaki J, FBC, FZC, MBC, MZC and all second

, and third cousins (non-removed)

A, JA, VIA, AV lalake C, BC, ZC, WBC, WZC, HBC, HZC, SW,

A» JA" agan S8, SD, DS, DD etc.

\'% sakatsikele v

VI, VAJA, --- sagada VI, VEBC, VFZC, ---, all taka/aki with
V prefixed

VIV, VAIAV, .- saleve VIV, VFBCV, VFZCV, all taka/aki with

V prefixed and suffixed

11. 10 Prescribed (classificatory) sister-marriage in Taromak-Rukai.
With respect to consanguineal chains the situation in Table 11.9 is the
same as for the generational systems in Chapter Seven; i.e. Taromak-Rukai
has the equivalence-rules X~Y, J~I1. In contrast to these other systems,
however, the kinterms for affinal chains show extensive overlap with con-
sanguineal kinterms; e.g. rama, naina and lalake are consanguineal and
affinal, as follows:

nama: X (F)~XYX (FZH)~Y)YX (MZH)~YXX (HF)~XYX (WF)
naina: Y (M)~XJXY (FBW)~YXY (MBW)~¥YXY (HM)~XYY (WM)



THE DRAVIDIAN AND GENERATIONAL GROUPS 111

lalake: A (C)~XYX (WBC)~XYIY (WZC)~¥XIX (HBC)~
¥YXY (HZC)~AXY (SW)~A¥X (DH).

Thus the Taromak-Rukai terminology has all the properties listed in
2.6 as as indications of prescribed marriage with collateral K-relative, and
the equivalences X~XYX (WF)~YXX (HF) etc. show that in this case
we have XY~YX~I~J, which means that K~J, i.e. a male marries his
classificatory sister. Unlike the cousin-marriages in other systems, where
ego may marry either a true or a classificatory cousin of the prescribed
types, sister-marriage means marriage with classificatory sister only, since
marriage with true sister, or with any lineal relative, is proscribed by
incest-taboos, little understood but inordinately powerful and almost
universal. In the Taromak-Rukai case every woman in the same generation
as ego is ego’s classificatory sister but the field-worker tells us that there is
a definite preference for actual second-cousins (non-removed).

11. 11 Kingraph for Taromak-Rukai. From the above information we
can draw the kingraph for the Taromak-Rukai system (generational pre-
scriptive) as in Figure 11.11.

11.12 The Taromak-Rukai group. Up to now we have stated the
Taromak-Rukai generating relations in the form x~y (X~Y), Xy~¥x~
XX~y¥~i (V~J~I). But from these rules we can derive

Xx=§y=i; e.g. Ix=Xyyx since yy=i
= since iy:j‘rx::’.

Thus the system is a group, and from the above set of rules we may
eliminate xy=yx=i, as being implied by the others:

e. 2. Xy=Xx since y~X

=i since  Xx=i.

Since y may be replaced by x, and y by X, every element in the
Taromak-Rukai group can be expressed as a product of powers—positive,
negative or zero—of x alone, and since the group has no other generating
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pf|lpm rlaumo|1kaingo
|
|
|
f Ilm nama | naina
|
|
|
e} Itaka
yJ aki
|
|
|
c lalake
1
|
|
cec agan

Generation patterns: 4, 1, 1, 2, 1

Figure 11. 11 Taromak-Rukai kingraph.

relations it is called the free group on ome gemerator, or the infinite cyclic
group, as represented in Table 11.12. Here the special affinal kinterms v, v,
vjv must again be put in square brackets (cf. Table 9.5) because they are
rule-equivalent but not coverset-coincident to the sibling kinterms. But they
are now written in lower-case letters because the field-worker specifically
tells us that they refer to all equivalent affinal chains; as he expresses it
“sakatsikele refers not only to ego’s spouse but also to the spouse of every
taka/aki of ego.”

11.13 Monoids, infinite groups and finite gromps. The two groups
considered up to now, namely the Dravidian and the Generational, have an
infinite number of elements, i.e. of distinct classes of chains. But there
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Table 11. 12 Taromak-Rukai as a group

Kinclasses i.e. elements of the group Glosses

i ejluj v, vi, vjv

X flm
» o c
x': 2| pm
R e
X% pl| pm
R ee
X Pl | pm
o cc

also exist prescriptive kinship systems with only a finite number of elements,
namely the so-called section-systems of Australasia; for example, the Kariera
system has four elements, and the Aranda has eight. The number of
elements in a binary system is called its order. Thus non-prescriptive
kinship systems are monoids of infinite order, prescriptive non-sectional
systems are groups of infinite order, and section-systems are groups of finite
order. Since we have already made the passage from monoids to infinite
groups, it would now be natural to proceed to finite groups, but we must
first interpolate (Chapter Twelve) an extremely important type of monoids,
namely the Crow-Omaha systems, postponed until now because we wished to
juxtapose the Seneca and Tamil systems for more convenient discussion of
Morgan’s attitude toward them.
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CHAPTER XII

Grow-Omaha Systems

12.1 The Omaha skewing rule, The phenomenon of skewing, i.e. of
using the same Kkinterms in successive generations, occurs throughout the
world. In many systems the skewing may perhaps be explained on the
ground that when a father dies his daughters look to their oldest brother
for the protection and advice formerly provided by their father, so that
from the point of view of their children an MB (uncle) becomes equivalent
to an MF (grandfather), and inversely nephew | niece becomes equivalent
to grandson | granddaughter. In Old English, for example, the kinterm eam
meant not only “maternal uncle” but also “maternal grandfather”, and the
reciprocal terms nefa | nift meant not only “nephew | nisce”, as in modern
English, but also “grandson | granddaughter”. Similarly, the Latin word
avunculus (uncle) meant a smaller, i.e. younger, avus (grandfather), the
idea of smallness being indicated by the diminutive ending -culus, as in
“homunculus” or “animalcule”.

In other words, ego’s MB (uncle) regards his sister, ego’s M (mother),
as though she were his (the uncle’s) daughter and therefore ego’s MBD, a
situation which in many systems has led to terminological identification of
MBD and M; e. g. in the Omaha tribe in Nebraska MBD and M are both
enaha. Thus we have YJX¢~Y, suggesting the equivalence-rule YX~Y,
where again YX is written for YJX, as in 9. 3.

The equivalence YX~Y, together with its inverse XY ~Y, is called the
Omaha skewing rule because it “skews” the generations by equating the
kinterm for YX (MBD) in generation G, with the kinterm for Y (mother)
in G,; and a kinship system that has such a rule is said to be of Omaha
type.

115
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12.2 Fox kinlist and kingraph. As a standard example for a system
of Omaha type we consider the Fox Indians in Iowa, the 5Ist of Morgan’s
77 Ganowanian tribes. The information in Table 12.2 is taken from Tax
[1937].

Table 12.2 Data for the Fox Indians

Glosses Native kinterms Examples
ol | pm nemeco | nogomes AA, AAJ, AYIX, AYIXR,
AYIRXX. AYIRRRR, -+
flrz nos | nesegwis X, X1, XXIX, XYIY,
mb | mz (m) necisa | negi (negy) (Y), YI, YXIX, YYIY, YIR,
YIXX, YIRRX, ..«

JYéb| ue netotam § netewam | netegwam J, XIX, YIY, XXIRR, XYITX,
YXIXY, YYIYY, YIXY,

or: el } xei. nesese | nemise YIXRY, YIXXXY, YXIY,
’ v nesime YXXIRY, ...
sld negwis | netanes A, ¢IY, ¢XJI¥, ¢XXIXY, oXXIT,

dXYIYY, ¢XYIXYY, ¢YIYY,
SYIXYY, ¢YXIYY, ¢YYIVYY,
SYYIXYYY,

X, uXIRX, uYIYX,
LYXIRYR, #YIXYXR,
HYIXRYR, nYXIYX,
LYYIRYR, uYYIREER, ..

Js|jd nenegwa | necemi same as for s | 4 with change of
sex of speaker
cc nocisem AA, JAA, XJYA, XXIYA, -

From the chains in the right-hand column we deduce the set of
equivalence-rules: J~I, XY~¥, which characterize the Omaha type and
enable us to draw the kingraph as in Figure 12.2. Here the G,-generation
must be split into four boxes because of the differences in its immediate
descendants, and the G;-generation has only one box because cross-cousins
have been absorbed into other generations, the patrilateral cross-cousins XY
moving downward into G.,; and the matrilateral YX upward into G,. Since
Figure 12.2 shows no collateral path from the X-box to the Y-box, the Fox
terminology is non-prescriptive.



CROW-OMAHA SYSTEMS 117

XX| pflpm XY pfl‘pm YX| pf|pm Yy pf|pm
—] — g el
k4

/ Y| mb|mz(m)
/ 7 i I
¥ s

Y
%| s|afidia
i
/
/
/
/
W
vy Xy cc X cc

Equivalence-rules: J~I, XY~¥, YX~Y
Generation patterns: 7 or 13, 3 (m), 5, 2, 1

Figure 12.2 Fox kingraph, of Omaha type.

12.3 Tracing-out on an Omaha kingraph. In Figure 12.2, as in any
kingraph, algebraic equivalences are geometrically represented by alternative
paths between boxes. Thus the equivalence-rule XY~Y is represented by
the two paths XY and Y from the I-box to the ¥-box. The XY-path runs
up the patriline to the X-box and then down the matriline to the Y-box,
while the Y-path runs directly down to the same ¥-box in one step.

Or again, the equivalence XXJY~Y can be verified either algebraically

as follows:
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XXIY ~XXY  because J~1
~ XY because XY~Y
= because XYY,

or geometrically because the XXJY-path first takes us up to the XX-box,
where the J leaves us motionless and then the Y-matriline carries us at
one step three generations down from the XX-boux to the Y-box, which can
also be reached by the alternative path Y,

As a third example, the fact that a male speaker applies the same
kinterm nefanes to his MFMZDSD (third cousin) as to his daughter can be
verified either by tracing-out the chain MFMZDSD or else by writing it in
the form xYXYJYYX4 and then cancelling first the J, then the YY¥=1J, then
the X before ¥ and finally the YY=1J, leaving X4 (daughter).

Finally, consider the effect of a re-entrant patriline of the form |
say for the Y-box, where it represents the equivalences YX~YXX~YXXX
~++e, 1,e. MB~MBS~MBSS~MBSSS~ ..., with the same kinterm necisa
for ego’s uncle, first-cousin, first-cousin-once, twice, three-times...removed
down and so on. For such a chain, say YXXXXX, the algebraic method
cancels the first X by the rule YX~Y, then cancels the second X by the
same rule, then the third etc., arriving finally at 'YX, while the geometric
method goes first from the I-box to the Y-box and then circles harmlessly
around the re-entrant patriline, remaining constantly in the same box.

Both methods answer the basic question of recurrence of kinterm-
coversets for strings. The geometric method, beginning at the left and
proceeding step by step to the right, is quicker than the algebraic method,
which begins in the certer and proceeds in both directions. On the other
hand, the algebraic method applies equally well to chains of any length,
whereas the geometric method may become unclear for chains rising into
higher generations beyond the diagram.

12. 4 An entertaining passage from Morgan. The fact that the same
kinterm necisa applies to infinitely many successive generations was a source
of amusement to Morgan. In an entertaining passage in Systems ..., p.
179, he writes:
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there is no doubt whatever of the actual existence and daily recognition of
these relationships, novel as they are. ...I first discovered this deviation
while working out the system of the Kaws in Kansas in 1859, The Kaw
chief’. . .insisted on it against all doubts and questionings. ... Afterwards
in 1860, at the Iowa reservation in Nebraska, [my adult informant] pointed
out a boy near us, and remarked that the boy was his uncle, and the son
of his mother’s brother, who was also his uncle.

Morgan summarizes his feelings with the words “under this system a
new-born infant becomes the uncle of a centenarian.”

12.5 Four Omaha subtypes. In the Fox system, as we have just seen,
the role of ego’s MF but not the kinterm (nemeco) is taken over by ego's
MB (necisa). In some systems the kinterm is taken over as well, producing
the string-coincidence YX~YJy, and therefore also the reciprocal string-
coincidence XY~ JY. For example, in the Wintu system YX and YJu are
both ape, which we have glossed as ps* because YX is shorter than YJu (cf.
3.6), and reciprocally XY and pJY are both tai, which we have corres-
pondingly glossed as cc. These statements can be verified by tracing-out on
Figure 12.5c; e. g. to find the box for xJY we at first ignore the g, since
tracing-out refers only to chains, then remain motionless for the J and
finally descend to the Y-box, where we find cc as the kinterm applied by a
male speaker.

Again, just as a Fox ego regards his MB as an uncle who has taken
over the role but not the kinterm of ego’s MF, so ego’s mother will regard
him (ego’s MB) as a brother who has taken over the role but not the
kinterm of father, so that his sisters, who are also the mother’s sisters,
appear to ego’s mother as persons who have taken over the role of father’s
sisters but have retained the kinterm for sisters. But in some systems they
take over the kinterm for FZ as well, producing the string-coincidence
XJp~J¢, and therefore the reciprocal coincidence $IX~¢J. For example,
in Wintu (see again Figure 12.5¢) XJ¢ and Jep are both hutunice, to be
glossed as ez (elder sister), while ¢JX and ¢J are both [ane, to be glossed
as yj (younger sibling), where ez naturally goes into the higher generation
and yj into the lower.



FOUNDATIONS OF KINSHIP MATHEMATICS

Xx| pf|pm XY lpfipm Y%| pf|pm YY PFle
\ 7 I 7 77 l
/ ‘
s /

\' / //-\
X ! P
\ / / /
/ P
\ F / s
b / m
VX f|fz / Y| mb ’ Tyz
\ T ! s l
\ | "4 P
/ Fd
\ | 7
\ ! b
\ I z z ‘
\ I eb | ez
\ | | b
\ | yb | vz
\ 7
| 7
\ | i
L s
1 /
kY \L i d
wl e - Y
y| Je|s|d X Sld"_JL‘.
» 7
/ /
& /
P4 /
7 /
F4 ¥
%% cc YX ce XY cc XX ce
of papa mb kaka 5 kotco
pm ama eh tatei d tune
f upu ez tete f g upsa
fz ene yh iti o atce
m=mez . ami vz uta
myz . anisu

Generation patterns:

Figure 12. 5a Southern Miwok kingraph, subtype Omaha I.

24, 3(irregular), 3, 2, 1.
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Generation patterns: 26, 3(f, m), 7(uxc.gc), 2, 3.

Figure 12.5b Tzeltal kingraph, subtype Omaha II.
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pl ape m nake Y : iane
pm amake eb labe ¢ : de
I H dantce ez hutuntce ée i tai

Generation patterns: 12, 3, 7, 2, 1

Figure 12.5¢ Wintu kingraph, subtype Omaha 1V.

These additional string-coincidences may be listed as follows:

i) XJp~Jp and gIX~¢JI; i e. paternal aunt equals elder sister (fz=ej)
and reciprocally female speaker’s fraternal nephew | niece equals
sibling,.

.
——
R

YX~YJp and XY~ JY; i.e. maternal uncle equals grandfather
(mb=mf) and reciprocally male speaker’s sororal nephew | niece
equals grandchild,
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Then Lounsbury distinguishes the following four Omaha subtypes (still
others exist; cf, 12. 8):

Omaha I, with neither i) nor ii);
Omaha II, with i) but not ii);
Omaha III, with ii) but not i);
Omaha IV, with both i) and ii).

Figure 12.5a, b, ¢ give examples of Omaha I, 1T and 1V. The Fox system
would also serve for Omaha I, and the Latin and Old English for Omaha
o1 (cf. 12.1).

12. 6 Wintu cousins again. From the ficld-worker’s remarks on Wintu
we can extract the following information:

Table 12. 6a Kinchains for Winta

Kinterms Kinchains
labe | hutuntce . % XIR, YI¥, YIRY, YXIY, XAJAX, YAIAY,
“lane ) XAAJAAR, YAAJAAY
ape | nake  :  YIJ, YIX", YAJAR, YAAJAAR, AYIXR, YYIXT
tai || de . XJY, XAJAY, XAAJAAY, XXIVA, YXIYY
dantce | hutunice : XI, XYIXY
tai || lane : nI¥, $IX
de || lane ; YXIYX
de : wIX, pIY
rai : XIYA"

If we arrange the sixteen possible cross-second-cousins as in the follow-
ing list, in which each of the eight unreduced chains represents two cousins,
brother and sister to each other, the truth of the statements in 2.7 can be
verified by simple counting; e g. for a speaker of either sex ape occurs
three times in the list, amake twice etc., for a male speaker rai occurs six
times, and hutunice once, and for a female speaker rai occurs four times,
hutuntee twice and labe once.
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Table 12. 6b Wintu second-cousins

e S S -
XX¥X X¥X X tai | tai
XXYy XYy iy iai | tai
XYRX XYX XY ape | amake
XYXY XYY X dantee | hutuntce
YXTX YYX X de | de || labe | hutunice
YXYY Y¥Y b tai | tai || de | de
YYXX YYX YY ape | amake
YYXY YYY Y ape | nake

The native coversets in the right-hand column can be determined either
algebraically from the equivalence rules or else geometrically, i. e. each of the
chains in the left-hand column can be traced-out on the kingraph in Figure
12. 5¢,

12.7 The Crow skewing rule. A kinship system with the equivalence-
rules XY ~X, YX~X obtained by interchanging the roles of X and Y in
the Omaha rules YX~Y, XY~Y (12.2) is said to be of the Crow type.

Then the corresponding additional string-coincidences (cf. 12.5) are:

i) YJg~Jp and pJY~pJ; maternal uncle equals elder brother (mb=
ej) and reciprocally male speaker’s sororal nephew | niece equals
sibling.

ii) XY~XIp and YX~g¢IX; paternal aunt equals grandmother (fz=
pm) and reciprocally female speaker’s fraternal nephew | niece
equals grandchild.

Here again Lounsbury distinguishes four subtypes:

Crow I, with neither i) nor ii): see Figure 12.7a;
Crow 1II, with i) but not ii): see Figure 12. 7b;
Crow III, with ii) but not i): see Figure 12, 7c;
Crow 1V, with both i) and ii).
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pf IPITI <
! 1
ez

pf | pm ! atipat | atika
S fz=m atias | atira
mb | m=fz :  tiwatsiriks | atira
Y| pz: irari | iratsti | itakri
0 H pirau
nze : tiwat
ce ! raktiti

Generation patterns: 7, 3(fz=mz), 1(irregular), 2, 1.

Figure 12.7a Republican Pawnee kingraph. subtype Crow I.
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Generation patterus: 49, 3(irregular), 2, 2, 1.

Figure 12.7h Crow kingraph, subtype Crow II.

12. 8 Other systems. It will be noted that the definitions of Crow I
and Omaha I are purely negative; i.e. they do not involve the additional
string-coincidences. Under each of these subtypes I it would be possible to
set up a large number of further subtypes. For example, we might distin-
guish between “bifurcate” systems, with fb==mb, fz+mz, and “semi-bifurcate”
with say fb#mb but fz=mz=m as in Republican Pawnee (Figure 12.7b), or
Hopi (Figure 12. 8); or between those systems in which the cut-off rules (no
new kinterms outside the five central generations) are strictly obeyed and

those which allow certain exceptions; e. g. the Republican Pawnee system
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Generation patterns: 5, 3, 7, 1, L

Figure 12.7¢ Trobriand kingraph, subtype Crow III.

has certain strange three-generation cyclings like X»+2—=X» which are pro-

bably remnants of some earlier prescribed marriage but have not been

satisfactorily explained.

Or again in the above classification the system of

the Hopi Indians in the Arizona Pueblos (Figure 12. 8) belongs to Crow I,
since it has neither of the two sets of string-coincidences necessary to
qualify it for Crow II, III, IV. But it does have two other pairs of coinci-
dences (see Figure 12. 8).

D YYu~Yp
) XYp~Xp

and reciprocally
and reciprocally

uYY ¥,
#YX~pX,
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which should qualify it for the title Crow V. In the present text, intended
to serve as a general introduction to the classification and cataloguing of
kinship systems, we cannot discuss all the numerous ramifications of Crow-
Omaha systems. In spite of their differences of subtype, i.e. of string-
equivalences, they are bound together by their characteristic equivalence-rules:

pRIPM | f|pm pf|pm 5
I | 3 I |
| \ e o -
\
\
N A\
~ \
mb | m f J fz=m ¢
~ — i |
e e
N
~
~
~
N
| eb | ez
yb=¢yz|yz|pyz=yb
<
~
~
~
~
N
c “ cc Hze |[ c
A ~
\ ~ X
\ ~
\ ~
A ~
S
gc [ c ll cc uzc” cc
pf ikwaa eb ibaba
pm isoo ez : iegoga
f inaa yb=dgyz : itopque
fz ikaa nyz iciwa
mb itaha pze itiwaaya
m inao c iti
cc imoyi
Generation patterns: 39 (irregular), 3, 7, 2(irregular), 1(irregular).

Figure 12.8 Hopi kiograph, of Crow type.
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XY~X, YX~X for the Crow type, in which the matriletters Y, ¥, are
cancelled and YR~Y, XY~Y for the Omaha type, in which the patriletters
X, X are cancelled, thereby skewing the generations. We recommend to
our readers the problem of cataloguing these subtypes.

More generally, now that we are on the point of passing to systems of
a radically different kind, namely the Australasian section-systems, we must
regretfully point out that we have also paid no attention to certain non-
sectional systems that cannot easily be fitted into our present scheme of
equivalence-rules. For example, we have said nothing about the Chinese
system, which is bifurcate, i.e. does not have the rule X~Y, and non-
merging, i.e. does not have the rule J~I. We hope that others will find
our formal (X, Y)-notation to be useful in cataloguing these systems as
well.
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CHAPTER XIII

Kariera Sectional Relations:
Permutation-Groups

13.1 Personal and sectional relations. Up to nmow recurrences of per-
sonal kinterms have been described by assigning linking chains to classes in
the given terminology, i. e. in a partition of the set of all chains, the classes
themselves being elements of a monoid or group. For Australasian section-
systems our purpcse remains the same, namely to describe recurrences of
personal kinterms, but our procedure is different. We first give an account
of relations among sections, which is then utilized to describe recurrence of
kinterms among personal relations.

13.2 The four Kariera sectienal relations. The Kariera tribe is divided
into two unnamed moieties. In one moiety the two sections (2.16) are
named Burung and Karimera, where for convenience we may take Burung
to be the even section, i, e. consisting of the even-numbered generations,
and in the other moiety they are named Banaka and Palyeri, where we take
Banaka to be the even section. We often abbreviate these names to their
first three letters Bur, Kar, Ban, Pal.

Since Bur and Kar are sets of alternate patrigenerations, the fathers of
all persons in Bur are in Kar and the fathers of all persons in Kar are in
Bur. So we may say that Kar is in the “sectional father-relation” to Bur
and conversely, and similarly for Ban and Pal. Then just as the personal
father-relation X is the set of pairs (@, b) of persons in U such that b is
the father of a, so the sectional father-relation for the set of four sections
Bur, Kar, Ban and Pal is the set of pairs (Bur, Kar), (Kar, Bur), (Ban,

131
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Pal), (Pal, Ban), such that the second member of each pair is the father-
section of the first member.

Thus the sectional father-relation replaces each of the four sections by
its father section, i.e. by the section directly underneath it in the following
array, which we denote by lower-case z in analogy with our notation z for
the set of all personal chains equivalent to the personal father-relation X:

1

) (Bur Kar Ban Pal
" \Kar Bur Pal Ban

or as we may say, the father-relation “rearranges” the sections.
Similarly the lower-case letter i will denote the sectional-identity array.

Bur Kar Ban Pal
(Bur Kar Ban Pal

in which every section is replaced by itself. This array may also be called
the (sectional) sibling-relation, since ego is in the same section with ego’s
siblings.

The marriage-rules of the Kariera tribe state that Bur and Ban exchange
wives, and also Kar and Pal, from which it follows that Pal is mother to
Bur and conversely, and similarly for Ban and Kar. The natives themselves
express these rules by saying:

Burung is father to Karimera and conversely
Banaka is father to Palyeri and conversely
Burung is mother to Palyeri and conversely
Karimera is mother to Banaka and conversely
Burung is wife to Banaka and conversely
Karimera is wife to Palyeri and conversely

Denoting the sectional mother-relation by » and the sectional wife-rela-
tion by w we thus have the set of four permutations;

Bur Kar Ban Pal
Bur Kar Ban Pal
(Kar Bur Pal Ban

(Bur Kar Ban Pa])
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Pal Ban Kar Bur

Bur Kar Ban Pal
w:

Ban Pal Bur Kar/.

(Bur Kar Ban Pal)
v:

Since the men in Burung give their (classificatory) sisters (i e. the
women in Burung), as wives to the men in Banaka and conversely, and
similarly for Karimera and Palyeri, the natives refer to the system as
“sister-exchange marriage”, although it might equally well be called
“daughter-exchange” (cf. 16.12), since e. g. the men in Burung give their
daughters, i.e. the women in Karimera, as wives to the men in Palyeri and
conversely.

13.3 Permutation-groups. Each of the four sectional relations i, z, v,
w is seen to be a rearrangement of the four sections, a concept which we
now wish to develop more generally, for use with other Australasian section-
systems.

Let U be a finite set of » elements a,, a,, +:-, a,-; of any kind, and
consider the operation of replacing each element a, by an element a; in
such a way that no iwo elements are replaced by the same element. This
operation may be described by writing the elements of U in any desired
arrangement and then writing under each g, the element a, by which a, is
replaced. For example, if U is the set of four integers 1, 2, 3, 4 and if
the operation, call it P, consists of replacing 1 by 2, 2 by 3, 3 by 4, and 4
by 1, we may describe P in the form

123 4 21 4 3
P= = .
(2341) or P(3214)’°t°'

with any desired arrangement of the elements in the first row.

This operation of replacement is called a permutation of the elements
of U.

The product of two permutations, say Py;=P,P,, is defined as the per-
mutation Py that results from carrying out the first permutation P, followed
by the second P,. Thus if
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1 2 3 4 1 2 3 4
P= =
; (2143) B (4321),

then P, took 1 into 2 and P, took 2 into 3, therefore P, takes 1 into 3,
and similarly for the other elements so that we have

1 2 3 4
PEZPlPIz:

3 41 2/.

Multiplication of permutations is clearly associative; i.e. (PyP,)Py=
P,(P.P,); cf. the associativity of chains.

Consequently, a set b of permutations of the elements of any finite set
is a finite group if it includes the inverse of each permutation in & and
the product of each two permutations in &. For example, the set of all
permutations of the four integers 1, 2, 3, 4 is a finite group, called the
symmetric group ZX,.

The order of the group X, i.e. the number of permutations in it
(11.13) is easily calculated, since for any fixed arrangement in the upper
row we have four choices for the integer to replace the first upper element,
i,e. to be put in first place in the lower row, then for each of these four
choices there remain three choices for the integer in second place, then for
each of these 4>¢3=12 choices there remain two choices for the third place
and one choice for the fourth, making 43232 1=24 choices in all.

More genecrally, the order of the group ZX,, i.e. the total number of
permutations of n elements, is given by n(n—1)x---33x2x1, a number
usually denoted by n! and called factorial n.

But there cxist smaller groups of permutations of the four integers.
For example, the set of four permutations

1234 1234 1234 1234
Py: y L PO R % 7
1234 2143 4321 3412
is closed under multiplication (e.g. P,P;=P,, as we have just seen) and
under taking of inverses, since each permutation is its own inverse.

13.4 The Kariera (or Klein) group. If we compare the permutations
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Py Py, Py, Py of the four integers 1, 2, 3, 4 in 13.3 with the permutations
i, z, y, w of the four sections Bur Kar Ban Pal in 13.2, we see that the
two sets of permutations are identical except for the names given to their
elements. Consequently, the four permutations i, x, y, w in 13.2 also form
a group. Such groups are said to be isomorphic to each other (iso- same,
merph- form) or to be the same abstract group. In pure algebra this group
of four elements is called the four-group, or the Klein four-group in honor
of the German mathematician Felix Klein (1849-1925), but in the present
setting we shall call it the Kariera group.

Since any of the four permutations in the Kariera group may be
multiplied by any other, we can set up a Cayley multiplication-table (Figure
13. 4), 50 called in honor of the British mathematician Arthur Cayley
(1821-1895).

i ‘ T v ’ W

i i ’ & ] w

2 z i w v
_v _zr w i £
w w U z i

Figure 13.4 Multiplication-table for the Kariera group.

13.5 Sectional kingraphs for Kariera. It is casy to verify, by actually
carrying out the permutations, that:

1) r=&, y=y, w=w, and therefore z*=p—=wi=j:

ii) Y=aw, w=iy=ay, a=yw=yw.

Thus the four elements of the group may be expressed either in terms
of » and y, or of z and w, or of y and w.

Corresponding to these three choices of a pair of generators we may
draw the kingraph for the sectional relations in various ways, five of which
are illustrated in Figure 13.5. The section marked i, i.e. the one containing
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Figure 13.5 Sectional kingraph for Kariera.
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€go, may be chosen at will. In the figure we put ego in Burung, thereby
fixing the sections of all ego’s relatives.

The notation yw in Figure 13.5 may appear strange at first sight, since
it seems to refer to ego’s mother’s wife. The explanation is simple. The
sectional relation yw=yxy first sends ego’s section into ego’s mother’s
section and then sends that section into its wife-section, namely the section
containing the wives of ego’s mother’s brothers, actual and classificatory.

13.6 Sectional reduction. Sectional relations differ from personal rela-
tions in several important ways. No person can be his own father’s father
but in Kariera every section is in the father's-father relation to itself.
Personal relations involve a large number of persons and a fairly large
number of kinterms, say from 10 to 35, corresponding to the large number
of possible relations between persons. On the other hand, sectional relations
involve a small number of sections and relations. For example, in Kariera
there are only four sections and only four distinct relations. For if @ and
b are any two sections, distinct or not, then either aib (a=b) or azxb
or ayb or awbh.

In other words, every sectional chain, say k=yxyXy can be reduced
either to i or to z or to y or to w.

By tracing-out on any of the Figure 13.5 we find that yx¥Xy reduces to
¥, and more generally: if we define the patri-height of a chain as the
height of the part consisting only of the parti-letters a, & and similarly
for matri-height, we see that a chain will reduce to

~—
wa

if its patri-height is even and its matri-height is even,
if its patri-height is odd and its matri-height is even,
if its patri-height is even and its matri-height is odd,
if its patri-height is odd and its matri-height is odd.
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CHAPTER XIV

Kariera Personal Relations

14. 1 Equivalence-rules for personal kinchains. As always, however,
our chief interest is in the reduction of personal kinchains, for which
purpose the convenient reduction just now demonstrated for sectional chains
will be valuable only to the extent to which the personal terminology of
the tribe has been adapted to its section-system; i.e. to the extent to which
ego applies the same kinterms to every person in his own section as to his
actual siblings, the same to every person in his father’s section as to his
actual father and paternal aunt, the same to every person in his mother’s
section as to his actual mother and maternal uncle, and finally the same to
every person in his cross-cousin section zj=gz=w as to his actual cross-
cousins. Presumably the adaptation of personal kinterms to sections will
be closer in tribes that have had a section-system for a greater length of
time.

So we proceed as follows. We describe the Kariera personal termino-
logy as being the kinship system with the equivalence-rules

XX YTXX~TY, oYl XY~YX

obtained by rewriting in upper-case letters the generating relations for the
sectional system with equivalence instead of equality. If on examining the
actual personal kinterms we find any discrepancies, they must be noted in
supplemental remarks (cf. 4. 7).

14.2 Grid for personal kinterms. To investigate the extent of this
adaptation it will be convenient to begin not with the terminology of the
Kariera tribe itself but with a terminology stated by Elkin [1954] to be the
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set of kinterms that would be used by speakers of the Nyul-nyul language
farther north to describe the Kariera system. Elkin provides us with these
kinterms in the form of Figure 14. 2.

YO Y'I YI YO
| g, o]
GZ kalod = djam djam == kalod
FF | FM WMM ME | MM
MFZ WFF | FFz
[ ]
Gl ibal = berai kaga = yirmor
F M MB Fz
WF WH
| |
GO babal =djalel djalel = maror
B MBD MBS Z
(male ego) FZD FZs
l I I
G,1 ibal = berai kaga = yirmor
S ZD Z5 D
| |
G_2 kalod = djam djam = kalod
55 5D 55 S0
Wy ¥ L Yo

Figure 14.2 Grid for a kinship system of Kariera type.

In Figure 14.2 the kinterms are arranged in four vertical columns with
one entry in each column for each of the five generations. Then the



KARIERA PERSONAL RELATIONS 141

twenty entries are joined in brother-sister pairs by ten horizontal braces
1. The longer braces, from the leftmost column to the rightmost,
join siblings in ego’s own moiety, FF to FFZ, F to FZ, Bto Z, Sto D
and SS to SD, say the Burung-Karimera moiety, and the shorter braces,
from the inner left column to the inner right, join siblings in ego’s wife’s
moiety, MF to MFZ, MB to M, MBS to MBD, ZS to ZD and ZS$ to ZSD,
i.e. the Banaka-Palyeri moiety. This arrangement brings spouses close
together on the page, so that they can be joined by signs of equality, from
‘which lines are drawn down to the pair of siblings who are children of those
spouses. The lines running down from the equality signs on the left have
the shape |

,» and those on the right have the shape !

r—

14.3 Kariera kingraph. But a grid of this kind is inconvenient in
several ways. For example, the line from kalod (ego’s MM in the upper
right corner) down to her daughter berai (ego’s M) changes direction four
times, so that tracing-out the answer to a question like: “what kinterm
does ego apply to ego’s SWFFZ”, becomes a laborious task. (For the
answer see 14.7.) More generally, the basic properties of the system, namely
its kinterm-recurrences, are obscured by the fact that chains with the same
kinterms are not brought together at the same place in the diagram, e. g.
kalod occurs in all four corners.

So let us redraw Figure 14.2 with two vertical columns, one for each
of the moieties, by putting brother and sister in the same box, i.e. in the
same section, with the Burung-Karimera moiety on the left and the Banaka-
Palyeri moiety on right, and again let us join each section to its father-
section by a solid line, to its mother-section by a dashed line and to its
spouse-section by a dotted line, as in Figure 14. 3.

14.4 Contrast between Tamil and Kariera. Our diagram now resembles
the Tamil diagram in Figure 10.2 and therefore still fails to represent the
fact that, while the Tamil system has no sections and consequently no vertical
periodicity, e. g. the grandparent terms are not the same as the grandchild
terms, the Kariera system is sectional, so that e. g. a male ego’s FF and SS
are in the same section, say Burung, with the same kinterm, kalod.
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Burung-Karimera moiaty Banaka-Palyeri moiety
Burung ff I PES Al el & 2% Sl fa mf = WEE l mfz = fm = wmm Banaka
| [ g |
Karimera £ I B o Do il | fi Palyeri
-l |
- —_—
Burung b | z versssseannes | mbsa frse wh | mbd=fzd=yy Banaka
Karimera s|d oo i o 25 | zd Palyeri
| ol |
Bu'rung 55 l sd trresssnessss | TOG l zsd Banaka
Ego's molety Ego's wife's molety
ff | mm : kalod mf |fm : djam
f|fz : ibal | yirmor mb | m : kaga | berai
b|z : babal | marer mbs|mbd : djalel
s|d ¢ ibal | yirmor zs | zd 1 kaga | berai
ss|sd : kalod zss | zsd @ kalod

Figure 14. 3 Kariera kingraph.

Expressed in terms of marriage regulations, the difference between the
Tamil system (non-sectional) and Kariera system (sectional) lies in the fact
that a Tamil male marries into his own generation whereas in the Kariera
system he is only required to marry into the proper section, which means
that his wife may be separated from him by any even number of genera-
tions, although it will most often happen that they are in the same genera-
tion. In general, this fact has little bearing on their actual relative age,
since in any society two persons in different generations below some common
ancestor may nevertheless be of the same age. However, it may occasionally
happen that a 70-year old man marries a 10-year old girl, an event that
has sometimes given umbrage to missionaries and civil servants, although a
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detailed knowledge of the system would suggest that in such cases the
young girl is disadvantaged in some way, perhaps by the death of her
father, and the elderly man has social obligations toward that segment of
the tribe into which he has the privilege of marrying. His purpose is to
take care of the girl until she and some young man in his segment are old
enough for a marriage in which they can take care of themselves.

14.5 Alternative forms for the Kariera kingraph. If we redraw Figure
14.3 in such a way as to bring together at one point on the page all those
points that represent the Burung section, and similarly for the other three
sections, we arrive at diagrams like those in Figure 14. 5.

Banaka W djam (djalel) Palyeri ¥ kaga | berai
P e Rl S ‘-d e — H
P ~
il ~
Palyeri | kagalberai ™ / Banaka |djam(djalel)\
AT / Pt
& "" "-_ / 7 \\ \
: : : | ‘ ’
:" :"‘ . ._.' :.‘ ‘ \ } l
& ] \ \ /
it \ N ¥ o /
-,‘.‘.‘ Karimera Iba1|‘r‘lrmr.__.- \\Karimera ibal|ylrmor//
Burung | kalod(babal|marer) Burung | kalod(babal|marer)
a) b)
kalod : FF, MM, FFB, FFZ, MMB, MMZ, -
babal | marer : B, Z, FBS, FBD, ---
ibal | yirmor: F, FB, FZ, xS, #D, uSSS, 488D, ---
kaga | berai : MB, M, MMM, WF, ¢S5, ¢D, ¢DDS, ¢DDD, ZS, DH, ---
djam : FM, MFZ, WFF, ZSS, ZSD, ---
djalel H MBS, FZS, WB, ZH, MBD, FZD, W, ---

Figure 14.5 Alternative forms of the Kariera kingraph.

14.6 Adaptation of personal kinterms to the section-system. From any of
these diagrams (Figures. 14. 2, 14. 3, 14. 5) we see that the personal kinterms
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have been adapted to the section-system with two exceptions. First, when
alter is in ego’s section, say Burung, and is therefore separated from ego
by an even number of generations in ego’s own moiety, the kinterm is
kalod, except that ego’s actual siblings have the special kinterms b | z=
babal | marer, which are then extended to all Burung relatives in ego’s own
generation. Secondly, when alter is in ego’s wife’s section, 1.e. Banaka if
ego is in Burung, and is therefore separated from ego by an even number
of generations in the other moiety, the kinterm is djam, except that ego’s
actual wife has a special kinterm djalel, which is then extended to all
Banaka relatives in ego’s generation. In Figure 14.5 these special kinterms
are enclosed in parentheses.
So we can now describe the system as follows:

Xe~Yi~], XY~YX,
except that chains of height zero have special kinterms, or in detail
pp=kalod, pp=djam, f| fr=ibal | yirmor, mb | m=kaga | berai
except that:

b | z=babal | marer (extended to all relatives in G, in ego’s section)
h | w=djalel (extended to all relatives in G, in ego’s spouse’s section)

14.7 Determination of the correct kinterm. From Figure 14, we can at
once trace-out the answer to the above question (14.3) about ego’s SWFFZ
(XXYXXJg if ego is male and YXYXXJg if ego is female), namely to
berai (mother) if ego is male and to yirmor (paternal aunt) if ego is female.

Or algebraically, the chain XXYXXJ$ is of even patri-height and odd
matri-height and therefore reduces to Y, and the chain YXYXXJ¢ is of odd
patri-height and even matri-height and therefore reduces to X (13.7). The
immediacy of these reductions, geometric or algebraic, in contrast with the
laboriousness of determining the same result from Figure 14. 2, indicates the
practical advantages of introducing group theory into the study of kinship.

In actual practice the aborigines make use of the section-system to deter-
mine the correct kinterm in the following way. If a young Kariera male
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encounters an unknown fellow-tribesman (cf. 1.2) ego will call out the
name of his section, e. g. “I am Burung”, whereupon alter will reply with
the name of alter’s section. If alter’s section is Karimera, ego knows at
once that the correct term is ibal, since Karimera is father-section to Burung
and alter is male. (If alter were female, the term would be yirmor).
Similarly, if alter’s section is Palyeri, the correct kinterm is kaga. But if
alter is in Banaka or in ego’s own section Burung, further discussion is
necessary to determine whether or not ego and alter are in the same
generation. By continued questions about their respective relatives they
will discover a linking chain between them. If this chain is of height zero,
ego will apply the kinterm djalel to an alter in Banaka and babal to an
alter in ego’s own section Burung; and if the linking chain is not of height
zero, ego will apply djam to an alter in Banaka and kalod to an alter in
Burung.

A similar lack of complete assimilation of personal kinterms to the
section-system occurs in all aboriginal section-systems. For example, from
Figure 14.7, which gives the Kariera kinterms in the Kariera language itself,
we see that here the assimilative process, of personal kinterms to the sec-
tional structure, has already gone rather far. Again there are special terms
for G, but the G,-kinterms are identical with G_,-kinterms and the G,-kinterm
toa for pFZ is identical with the G_,-kinterm roa for the inverse relative
¢BS in G_,.
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Figure 14.7 Kinterms in the Kariera language.



CHAPTER XV

The Karadjeri Gonnubium

15.1 Connubium with circnlar indirect exchange. One of the most
striking features of aboriginal life is the exchange of gifts, which is often
competitive because the giver of more valuable gifts enjoys greater prestige,
as in the elaborate potlatches among the Indians on the northwest coast of
America. The exchange may be direct, between two clans, or it may be
indirect, in the sense that one clan, call it W,, gives wives to another W,
but W, gives, not back to W,, but to W,, and so on up to a last clan in a
cycle, which then gives back to W, as in Figure 15. 1, and cases are known
where the compensating gifts back to W, were not received until after the
death of all the original initiators of the gifts from W, to W,. (Cf. the
“long-term investment” in 21.5).

In particular, the gifts may take the form of bride-wealth, in payment
for the most valuable of all aboriginal possessions, namely wives, so that
the gifts move in one direction, along the arrows around the cycle in Figure
15. 1, and the wives move in the other direction, against the arrows. As
always in our diagrams, a dotted line is a wife-line, with an arrow pointing
in the direction in which a male moves in order to find his wife. Thus a
wife-line with no arrow, i.e. a line pointing in both directions (as in
Kariera, see Figure 13.5), shows direct (symmetric) exchange of wives, and
a wife-line with an arrow shows indirect (asymmetric) exchange. In Figure
15. 1, the clan W, is called a direct wife-giver to W,, and W, is a direct
wife-taker from W,. Then W, and W, are indirect givers to W,, and W_,,
W_, are indirect takers from W, while W,=W_,, at an equal distance from
W, in both directions, is an indirect giver to W, and also an indirect taker
from W,.

147
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W
L
7 B,
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Subscripts are positive for givers to W,, negative for takers from W,.

Figure 15.1 Indirect or asymmetric exchange of gifts etc.

Then by a marriage-alliance or connubium, with circular_ indirect exchange
we mean a set of n clans, n°>2, which can be arranged in a circle such
that the even section in each clan takes its wives from the even section of
its clockwise neighbor, and similarly for the odd sections.

The generating relations for the group of sectional relations in such a

connubium are given by:
2i=wr=l], IW=waz,

with x?=i because there are two sections in each clan, w*={ because there
are n clans, and zw=wz because the permutation zw takes ego’s clan into
the section of opposite parity (i.e. from even to odd and from odd to even)
in the next clan clockwise, and waz produces the same result. Consequently
a tribe with circulating indirect exchange has MBD-marriage (1l.5), and
this marriage must be matrilateral, i.e. ego’s wife cannot be ego’s FZD
since she is in clan W_,, with w=w for n>2.

15.2 Karadjeri prescriptive grid. The simplest example of a section-
system with indirect exchange is provided by the Karadjeri tribe on the
west coast of Australia, just north of the Kariera. Here Elkin presents his
kinterm information in the form of Figure 15.2a, again with an equal-sign
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joining spouses, a horizontal brace joining siblings, and bent lines for
patridescent.

Although at first sight Figure 15.2a appears to contain five vertical
patrilines (which we have labeled W_,, W_,, W,, W,, W,), it is to be noted
that the kinterms on the left (which Elkin has labeled W3FFZ and W:FF
in G;, W2FZ and W2F in G, etc.) are identical with the corresponding
kinterms on the right, and Elkin specifically informs us that they refer to
the same set of persons, i.e. to the same patrilineage, which may therefore
be labeled W,,. Consequently, there are only four clans altogether, forming
a circular connubium of four clans. Thus Elkin’s table of kinterms (Figure
15.2a) may be redrawn as in Figure 15.2b, and the Karadjeri permutation-
group, i.e. the group of sectional relations, is the commutative group with

generators x, w and generating relations z*=wit=i
or

generators z, ¥ and generating relations z:=yt=I|.

15.3 Karadjeri kingraphs and kinlist. When Figure 15.2b is redrawn
in such a way that points representing the same section are brought to one
point on the page (cf. Figure 14.5 as a redrawing of 14. 3), the results are
diagrams like Figures 15.3a, b.

The entire Karadjeri kinlist can now be accommodated in a scheme

malp

like 15. 3c, where for W_; the notation { }opposite the generations

kaga | bap

G . . :
{ ‘} means that malp is the coverset for all even positive generations and
1
- . : djam
kaga | bap for all odd positive generations, and the notation {b } oppo-
ap

. . Gy
site the generations

} means that djam is the coverset for all even non-
1

positive generations and bap for all odd non-positive generations, and simi-
larly for the other clans.
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Figure 152b Karadjeri System.



152 FOUNDATIONS OF KINSHIP MATHEMAT]CS

kagalberai hoiz=1 k e kamad
y /_, amad djam m;.,—i
/ \ dja al“:'.\ e
Xy x l/ g N xiti ot
r‘ T/ L ramhz| valn \ kag?]b”“ ranbalya la
\ malp | A m l'Q—I—-a';la L
\ \ x_Ibal ?r-_amijl B il ‘..?:.T aaP B
o R ey W
a \'\--..,, — ~ ] k e
.]/ )
o i Y3 ;l 7 - MllP
a K i
allmarer)kalog LI _____/ Mgg:_ﬂi (baba)|marer)kalod LTy
(X.Y) a} (K.W) bl)

Figure 15.3 Karadjeri kingraph.

Table 15.3 Karadjeri kinlist showing periodicity

G, malp kalod diam

G, J’ ramba } { kaga | bap } { ibal } {kaga | berai } ramba
G [ kamad djam babal | marer djalel { kamad }
G, { bap } { }

J wal } kaga | berai
| raloa
Waia W_y Wo W, Waa

15.4 ZD-exchange marriage. In 13.2 we have seen that the Kariera
natives describe their system as sister-exchange, and that it might also be
described as daughter-exchange. Let us now calculate the type of female
relative exchanged in Karadjeri marriage. If we denote by K the chain
by which a male p, is linked to the female relative whom p, gives in
marriage to a male p,, we can determine K from the fact that p, is the
husband of the K-relative of p, and conversely. For we have p,KHp, and
p,KHp,y, so that pKHp,KHp,, or more concisely p,KHKHp,, which means
KHKH~I. Geometrically speaking kk is thus half of a full circuit, see
e. g. Figure 15. 3b, from ego’s section back to ego’s section,

Since wt=1i, we have wi=/ht=|, and since 2*=i it follows that 2%hi—=i
is a full circuit and therefore zh® is a half circuit. Thus kh=zh?, so that
k=ph=xjr=7, which means that the female K-relative in question is
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p¥p~pI¥p=pZD. In other words, Karadjeri has “sister’s-daughter-exchange
marriage”.

This ZD-cxchange marriage, with k=, can be traced-out conveniently
on Figure 15.3a. Since A=, so that kh=#j», the path ##z will bring us
half-way around from the point i, as may be verified by tracing-out Jir a
second time beginning now at xy*=7%z and ending up at i. The figure
shows that males who exchange their ZD’s in this way are ramba to each
other.






CHAPTER XVI

Murngin (6, 4)-Marriage

16.1 Murngin clans. The Murngin tribe, which leads a hunting and
gathering life around scattered waterholes in Arnhem Land, northwestern
Australia, consists of approximately 60 clans, divided into two moieties Dua
and Yiritcha. The clan, the basic unit of economic and religious organiza-
tion, is patrilineal, exogamous, patrilocal and virilocal: namely, every person
belongs permarently to his or her father’s clan, no person may marry
within his own clan, a male remains permanently in the territory of his own
clan, and a female moves after marriage from her father’s territory to the
territory of her husband. Typical names for the clans come from natural
phenomena or from plants and animals; for example,

1) Warumeri: red cloud

2) Kalpu: sharp pointed clouds
13) Birkili: high clouds

14) Djambarpingu: small bird

17) Daiuror: snake

The numbers 1), 2),..., 17) are taken from Warner’s list [1937: 39-511,
who gives the names of 43 clans and states that his list is not complete.

16.2 The Murngin contiroversy. There are many reasons why the
Murngin system deserves a central place in kinship studies. Field-workers
have provided us with a rich supply of data, the system is more intricate
than others, it gives us a key to the understanding of connubial complexes
(16.6), and during the forty years from the first article on the subject
[Warner, 1930] to the most recent book [Liu, 1970] it was the subject of

155
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active controversy, best described in Barnes's “Inguest on the Murngin”
[1967]. In his final paragraphs Barnes writes:

...the central facts of their marriage system remain as obscure as ever
... The subsection arrangements seem to be in a muddle... Warner's first
reports were inconsistent, and yet at the same time so full of information
... that they were bound to attract attention.... Hence the unravelling of
the mysteries of the Murngin became an intellectual challenge... It is
now probably too late to retrieve knowledge of the social structure of ihe
Murngin as it was in Warner's day [1926-1929].

Yet even while Barnes was writing these despairing words, Liu [1967,
1969] was constructing a solution on theoretical grounds and Shapiro [1967,
1968, 1969], working in the field without knowledge of Liu’s theory, was
making the ethnographic discoveries that would validate the theory. The
present chapter and the next two describe Liu’s theory and show how it is
validated by Shapiro’s discoveries.

The most important of these discoveries, at least for our present pur-
poses, are the following two. In his first article Shapiro writes:

In come cases, the total marriage network is limited, consisting of four
or six sibs [these are our clans] “marrying in a circle”...From another
point of view, however, most of the sibs...constitute a single large marriage
network [this is our connubial complex: see 16.6].

Then in the second article comes the truly remarkable discovery:

[Shapiro 1968, p. 349] The Aborigines...consciously practice ZDD
[marriage] exchange...

An informant...who had lived for some time with non-"Murngin®
Aborigines spontaneously compared it with sister exchange, practiced, he
pointed out, by some of the peoples with whom he had been in contact.

16.3 Warner’s kinterm chart. In his 1930 article Warner published the
kinterm chart reproduced here as Figure 16.3a.

We are told by Warner and other informants that the kinterms in Figure
16, 3a are not limited to the five central generations but may be extended
to any desired number of higher and lower generations, as shown in our
Figure 16. 3b for the abbreviations Bur,, Bul, etc. see 16.7), where we have
rearranged Warner’s patrilines so as the make them vertical, as in our
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rearrangement in Figure 15.3a of Elkin’s diagram in Figure 15.2a. By
following the matriline in Figure 16. 3b down two generations from ego’s sub-
section (enclosed by a double rectangle) to ego’s ZDD (;JYY¢) we see that
in Warner’s transcription the Murngin kinterm for a male speaker’s sister’s
daughter’s daughter is kutara, so that ZDD-exchange marriage is described
by the natives themselves as kutara-exchange. Shapiro, who transcribes ZDD
as gutarra, tells us [1968: 351] that they call it gutarrana gurrupanmirri.
Concerning his chart Warner 1937: 57 writes:

...there are seven lines of descent and five generations in each lineage.
The seven lines of descent include a man’s or woman’s own patrilineal line,
three lines of descent related to him through his father and three through
his mother.

The three lines related to ego through ego’s mother and labeled W,,
W;, W, in our Figure 16.3b refer to the patrilineages of ego’s M, ego’s MM
and ego’s MMM respectively, and the three related to ego through ego’s
father, namely W._,, W_,, W_,, refer to the patrilineages of ego’s FZH,
FZHZH and FZHZHZH. Alternatively, the seven lines refer to the patri-
lineages of ZHZHZH, ZHZH, ZH, self, WB, WBWB, WBWBWB.

16.4 The basic problem. Now comes the basic problem, stated thus by
White [1963: 119]:

Warner’s chart of kinterms ends in mid-air three generations away from
ego both on the ZH and the WB sides...what male kinship personality does
ego’s ZHZHZHZ marry and what female personality does ego’s WRWBWB
marry?

Barnes [1967: 28] states the same problem thus:
the men in Warner’s extreme right-hand column must marry, and the

women in the extreme left-hand column, and the problem is to determine
what ego calls the spouses of these relatives,

Lévi-Strauss [1963: 305] remarks:

Warner’s study leaves some basic problems unanswered, especially the
way in which marriage takes place on the lateral borders of the system.
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Warner himself [1930: 210-211] states the difficulty thus:

this asymmetrical cross-cousin marriage causes a female relative in the
third patrilineal column to the right of ego to go unmated (in the kinship
system) or a never ending addition to this system...but as one line is
added to each side of the system a new one is necessary.

Warner suggests [1937: 115] that the desired closure of the system is
obtained by intermarriage of the outside line on the right with the line
second from the right, and of the outside line on the left with the line
second from the left. But as White remarks, this suggestion can be refuted
at once. For let us consider two ego’s, call them p, and p,, with p, in
Warner’s central column and p; in Warner’s rightmost column, so that p, is
nati-elker to p,. Then sister-exchange marriage is proscribed for p,, in War-
ner’s central column, and prescribed for p;, in Warner’s rightmost column,
an impossible situation since the original ego p, can be chosen arbitrarily.
In White’s words [1963: 121, cf. our 13.2], “the whole structure must look
the same from the point of view of any (male) ego.”

In the chart for Karadjeri corresponding to Warner’s chart for Murngin
(Figure 15.3a corresponding to Figure 16.3b) there are five vertical patrilines,
but in that case there is no difficulty because the leftmost line is identical
with the rightmost. But in Warner’s chart the kinterms in the W_,-line on
the left are distinct from those in the W, ,-line on the right, so that there
appear to be seven lines altogether, although the number of clans must be
even, since they alternate between the two moieties. As Lawrence and
Murdock say (see just below) the relatives at the lateral extremes cannot
marry each other since they belong to the same patrimoiety. Moreover, the
native themselves have emphatically stated that Warner’s chart can be ex-
tended arbitrarily far to left and right by repeating the pair of lines W_,
and W_; as often as desired to the left, to form pairs of lines W_, and
W_;, W_g and W_, etc. and similarly repeating the lines W, and W, on the
right to form W, and W;, Wy and W, etc. Thus it seems that there may
be nine lines, or eleven, or any odd number, although we have just seen
that if we are to have a self-consistent closed system the number of lines
must be even.
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16.5 The imaginary eighth line. Most of the attempts to resolve the
paradox recognize the need for some kind of cycling. For example, if the
kinterms in the line labeled W_, of Figure 16. 3b were the same as those in
W,, the whole figure could be wrapped around a vertical cylinder in such a
way that the W_; line would coincide with the W, line, and we would have
the desired closure, just as in the Karadjeri case.

With this idea of cycling in mind Lawrence and Murdock [1949]
proposed to insert an “eighth line”, on the left and again on the right of
Warner’s chart, i.e. just once altogether when the chart is wrapped around
a cylinder. They write:

in his seven-line kinship chart Warner gives no indication of the marri-
ages of the relatives at either lateral extreme. Clearly they cannot marry
each other since they belong to the same patri-moiety. Conceivably they
might marry persons to whom no kinship terms apply, but this would be

distinctly un-Australian and, in addition, would practically require special
affinal terms which are not reported.

It seemed more probable that an eighth patriline might exist, its men
intermarrying with Patriline 7 [our W_;] and its women with Patriline 1
[our W;].

To meet the obvious question: why did Warner not report kinterms for
this imagined eighth line, Lawrence and Murdock say “the occurrence of.,.
‘wrong marriages’ with inappropriate relatives [see 17.6] rendered difficult
the discovery of cycling throughout the eight patri-lines.”

We shall not attempt to describe the cogent arguments advanced against
this nebulous eighth line, since the interested reader can read about them
in detail in Barnes’s “Inquest”.

In a letter to Lawrence and Murdock, quoted by them in their 1949
article, the Australian missionary-anthropologist Webb describes his per-
plexity over “a perpetual extension of lines laterally with no possible hope
of the cycling that I expected and my informants affirmed.” For Webb’s
proposed solution, also rejected by anthropologists, the reader is again referred
to the “Inguest”. Of interest to us is the information in his letter that the
natives insisted on the existence of cycling and kept trying to point out to him.

This seven-line problem remained constantly the same: just how did

the system cycle, and if it did, why have Warner and subsequent field-wor-
kers failed to say so.
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16.6 Four-clan and six-clan connubia; connubial complex. In his three
articles [1967, 1968, 1969] Shapiro was not directly concerned with the
seven-line problem but rather with demonstrating the dominant role of
matrilines in certain parts of the Murngin social system (16.14), and he
therefore overlooked the fact that his data provided the solution to the
problem.

In his first article [1967: 354] Shapiro writes (cf. the quotation in our
16, 2):

the clans that are linked directly in marriage (i.e. those in a wife-giver
— wife-taker relationship) are usually associated with territories that are
adjacent to each other, or at least close by. In some cases, the total marri-
age network is limited, consisting of four or six clans “marrying in a circle”
associated with territories covering only a small part of northeastern Arnhem
Land. From another point of view, however, most of the clans in the entire
Murngin area constitute a single large marriage network.

Before the publication of Shapiro’s actual discovery of these four-clan
and six-clan connubia which had remained unnoticed by earlier field-workers,
Liu [1967] had already postulated their existence on the theoretical grounds
described below in 16.12. Consequently Shapiro’s discovery was welcome
news to Liu; for as he himself' says [1970], “there was no ethnographic
data to verify my postulation until Shapiro provided them.” To describe
this verification we must first examine certain features of Murngin social
organization,

16.7 Murngin subsections. In the Murngin tribe each of the two sec-
tions in a clan divided into two named subsections (cf. 2. 16) with constituent
generations and names as follows (see e. g. Webb 1933: 407):

Dua moiety . : Yiritcha moiety
(name of subsection) ~ comstituent generations (name of subsection)
Warmut: veny Oy Gy Gogy Goygy v Kaijark
Balang: oy Og Gogy Gogy Gugoree Ngarit
Karmarung: veny Gy Gogy Gogy Goyyse s Bangardi

Buralang: wony Gop Gy Tty Tgaroine Bulain
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The assignment of G, to the Buralang subsection is arbitrary but fixes
the generations for the other subsections.
Here again we abbreviate the names to their first three letters

Bur, Kan, Bal, War in the Dua moiety
Bul, Ban, Nga, Kai in the Yiritcha moiety,

and for definiteness we assume that ego is in the Djambarpingu (small
bird) clan of the Dua moiety, which we therefore denote by W,. Then the
direct giver clan for W, will be denoted by W,, the direct taker from W,
by W_,, the giver for W, by W,, the taker from W, by W, und so on, so
that we have a circular indirect exchange as in Figure 16, 7.

W
tp
wpﬂ saaeneR ?
'.‘,.- -..l--_(p_,l)
* é
Wz 1) .': W_z
L}."' ."°.‘
1 seaguinants®™ w-'l
WO

Figure 16.7 Murngin circular connubium

Since marriage is cross-moiety, the two moieties Dua and Yiritcha alter-
nate around the circle, so that the number of clans n>2 must be even and
may therefore be 4, 6, 8, 10,.... The existence of such cycles in Murngin
is now known for n=4 and n=6 (see Shapiro’s statement in 16.6) and is
theoretically possible for n=8, 10, 12,...., as in Figure 16, 7, where p=n/2.
Since we have chosen to put ego in a Dua subsection, namely Buralang,
the clans numbered Wy, W,, W_,,... with even subscripts will be Dua clans,
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and the clans W;, W_,, W_;,... with odd subscripts will be Yiritcha clans.
The Buralang subsection in the Wy-clan will be denoted by Bur,, in the
W,-clan by Bur,, in the W_, clan by Bur_,, and similarly for Kar,, Kar,,
Kar_, etc., Bul,, Bul,, Bul_, etc., and so on,

16.8 Regular and non-regular marriages. In the kind of marriage
described by Webb, Elkin, etc. as “regular” (for alternate marriage see 17. 5)
the rules are as follows:

Warmut and Kaijark exchange wives
Balang and Ngarit exchange wives
Karmarung and Bangardi exchange wives
Buralang and Bulain exchange wives,

but in every case bilateral cross-cousin marriage is proscribed, i.e. the
exchange is indirect: if the Buralang subsection in clan W, takes wives
from the Bulain subsection in clan W,, then Bulain must take wives from
the Buralang subsection of a different clan W,=W,.

However, non-regular marriages are frequent for many reasons. For
example, the average number of persons in a Murngin clan cannot have
been much more than 60 at any one time, so that even under the most
favorable circumstances a given subsection often contained more marriageable
males than could find wives in the proper corresponding subsection, and this
difficulty was greatly aggravated by the fact that polygyny was practiced
by the more influential older members of the tribe (cf. 16.14), a practice
that could be maintained only because of frequent deaths among the younger
men, who fought with one another over females to whom they had a better
or worse right, or perhaps no right at all; and occasionally, a female
would abandon her customarily passive role in this matter, to elope with
an “irregular” husband. Nevertheless, it is the rules, i. e, the regular mar-
riages, that influence the kinship terminology, since the child of any kind
of non-regular marriage is assigned to the subsection to which it would
belong if the mother had made a regular marriage, or to use the picturesque
native expression “the father is thrown away.” Thus a statement like
“Buralang is father to Warmut” (see just below) refers onmly to regular
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marriages. If a Buralang man makes a regular marriage with a Bulain
woman, his child is indeed assigned to Warmut, but if he makes an alter-
nate marriage (17.5) with a Ngarit woman his child is assigned to Karma-
rung; for if the child’s mother had made a regular marriage she would have
married into Balang, which is in the father relation to Karmarung; and
similarly, for wrong marriages (see 17.6, 17.7).

16.9 Relations and graph for the generators x and w. As generating
relations for the group of sectional relations in the (6,4)-Murngin case we
will have x*=i because each clan has four subsections, and w®=i because
the six clans “marry in a circle” (cf. Karadjeri in 15.3, with x*=wt=i);
and as always for circular indirect exchange the group will be commutative,
i.e. xw=wx. Consequently, the Cayley graph for the group can be drawn
as in Figure 16.9.

Figure 16.9 The six patricycles and four wife-cycles in a regular
(6, 4)-connubium; all cycles run clockwise.
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The six clans in Figure 16.9 may be described as follows:

W, is the clan of ego’s B and Z (and of ego himself or herself)
W, is the clan of ego’s BW (or W if ego is male)

W_, is the clan of ego’s ZH (or H if ego is fmale)

W, is the clan of ego’s BWBW (or WBW if ego is male)
W_, is the clan of ego’s ZHZH (or HZH if ego is female)

W_;=W,; is the clan of ego’s BWBWBW (or WBWBW if ego is male

or ZHZHZH or HZHZH if ego
is female).

Since ego’s clan W, has three giver clans, W, (direct giver) and W,,
W, (indirect givers) and three taker clans, W_; (direct taker) and W._,,
W_; (indirect takers), the number of clans might seem to be seven, but in
fact it is only six because W,=W_, is both giver and taker.

16.10 Generators x and y. In order to obtain generating relations for
the group in terms of x and y, instead of x and w, we set w=ZXy in x¢=
wé=i, so that (Xy)®=X®y®=x%y®=i. Thus the desired relations are

Xd=x2y8=i, Xy=yX.

The reason for the extra complication here, namely the presence of x* in
the relation x®y®=i, may be seen as follows.

In passing from ego’s subcection Bur, in clan W, to ego’s wife’s sub-
section Bul, in clan W,, e.g. by tracing-out in Figure 16.9, we raise the
clan-index by one, and similarly for each step through the six-clan cycle
Wi—W; W W=W_;->W_;-W_,+W,. But we do not raise the genera-
tion from one clan to the next, so that in returning to clan W, we arrive
at the same subsection, thereby completing a wife-cycle of length six (we=i).

But in passing from ego’s subsection Bur, in clan W, to ego’s mother’s
subsection Ban, in clan W, by tracing-out the line y=xw from Bur, to Ban,,
we raise by one not only the clan-index but also the generation. In tracing-
out y=xXxw six times we thus pass successively through Ban,(y), Bal,(y®),
Kaiy(y®), Bur_,(y*), Ban_,(y%), arriving after the sixth step at Baly(y%) in
the original clan W, but six (i.e. two) subsections higher than before, so
that we have y®=x%w®=x?=i and therefore xyS=x¢=i.
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However, after another passage around the six clans we come back to
the same clan W, twelve generations higher and thus in the original sub-
section Bury, so that y'*=i. So it might seem as though xt=i, y*=i, is a
set of defining relations for the 6-regular connubium. But that set would
produce a group of 48 elements, whereas the connubium has only 24. It is
necessary to incorporate the relation x%y®=i, whereupon there is no need
to mention y'2=i explicitly, since x4=x®yo=i already implies i= (x?y®)?=
xtyle=yis,

Since y!* is the lowest power of y that is equal to the identity, each
matricycle consists of 12 subsections and therefore, since there are only 24
subsections altogether, the (6,4)-Murngin connubium consists of exactly
two matrilines (cf. Shapiro’s remarks below in 16.14).

Then just as Figure 16.9 shows the (6,4)-connubium as six patricycles
and four wife-cycles, so we may draw Figure 16.10 to show the connubium
as six patricycles and two matricycles.

Figure 16,10 The two matricycles (circles) and six patricycles
(ellipses) in a regular (6, 4)-connubium.
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16. 11 Generators y and w. Finally, Figure 16.3b shows all three kinds
of lines, patrilines (vertical) matrilines (diagonal) and wife-lines (hori-
zontal). Because this figure fails to bring the left-column into coincidence
with the right column although they represent the same clan W,,, the two
matrilines, ego’s and ego’s wife’s, appear as broken lines in the drawing
rather than as single straight lines. For example, in G, ego’s ascending
matriline jumps from gawel | arndi on the right over to waku on the left,
since these two boxes represent the same subsection Kai,y.

From Figure 16.3b it is easy to read off that the two matrilines are in
fact cycles, of length twelve generations, e. g. ego’s matriline is in the same
subsection Bal, for Gy and for G_,. Similarly that the patrilines are cycles
of length four generations, e.g. Bur, in G, is the same subsection as Bur,
in G,, and the wife-lines are cycles of length six clans, and therefore the
three kinds of lines—solid, dashed or dotted—appear as actual closed cycles.
To make the geometric picture correspond to the ethnographic facts, i.e.
to bring together at one point on the paper all the boxes in Figure 16.3b
that represent the same subsection, it would be necessary not only to wrap
the figure around a vertical cylinder so as to bring W_; into conjunction
with W, but also to bend it over from the top so as to bring Bur, in G,
into conjunction with Bury in G, etc. In other words, the figure should be
drawn on the surface of a torus, i.e. a doughnut with a hole. However,
instead of drawing the somewhat complicated diagram that would then
result from projecting this torus onto the plane of the pagrer, we can attain
the same result by means of a graph like Figure 16.11, where to lighten
the drawing we have omitted the six patricycles, which can be traced out
on the figure from relation x=yh=yw.

16.12 Six-line chart and exchange marriage. Liu began his theoretical
investigation of the Murngin system as a result of reading Needham’s [1957]
article on circulating connubium in Eastern Sumba (cf. our 18.1). On the
analogy of the Kariera (degenerate) marriage-cycle of two clans, each with
two sections, Liu argued that the four subsections in Murngin may have
resulted from the existence of four-clan marriage cycles; and then the existen-
ce of still longer cycles in Eastern Sumba made it seem probable that longer
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Figure 16.11 The two matricycle (clockwise circles) and four
wife-cycles (counter clockwise triangles) in a
regular (6, 4)-connubium.

cycles existed also in Murngin. In Sumba the cycles may be of any length,
even or odd, but in Murngin they must be of even length 4, 6, 8,.... In
view of the controversy over Warner’s seven-line chart, Liu first concen-
trated his attention on the 6-clan connubium. On comparing Warner’s
seven-line chart for Murngin with Elkin’s five-line chart for Karadjeri, Liu
rostulated that, just as Elkin’s leftmost kinterms refer to the same persons
as his rightmost, the two sets of kinterms being identical with each other,
so also Warner’s leftmost kinterms refer to the same persons as his right-
most, even though in this case the two sets of kinterms are quite different
from each other.

More specifically, he postulated that in the even generations the kinterm
due-elker on the left in Figure 16.3b refers to the same persons as the
kinterms nati-elker | memo-elker on the right, and in the odd generations waku
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on the left refers to the same persons as gawel | arndi on the right. Con-
sider, for example, the sons and daughters of those female relatives whom
ego calls gurrong. In some cases they are to be called due-elker and
in other nati-elker | momo-elker and our ignorance of the principle on
which the decision is made (cf. 16.13) is due to the failure of field-workers
to ask this question because it never occurred to them that Warner's left-
hand and right-hand kinterms could refer to the same persons.

Liu’s suggestion that Warner’s seven-line chart in fact contains only six
lines was mentioned in his early publication [Liu 1967, 1968, 1969] many of
which were largely inaccessible to the intellectual public at arge. In any
case it would probably have made little impression, since there was nothing
in the ethnographic evidence either to validate or to refute it until the
publication of Shapiro’s findings. In his 1968 article Shapiro speaks of “grappl-
ing with sister’s daughter’s daughter exchange.” It would seem that his
difficulties arise from the fact that he everywhere speaks of ZDD-exchange-
marriage as though it were equally applicable to four-clan, six-clan and longer
connubia, whereas in reality it applies only to the six-clan case. To see
this, let us examine the question of female-relative exchange from a general
point of view (cf. the Karadjeri case in 15.4).

Let the connubium have 2n clans, each with 2m segments, where the
word “segment” is used to mean either “section” or “subsection”. Then the
generating relations are x!”=w?"*=i. Thus

in Kariera: X=wli=i: m=n=1

in Kardadjeri: X=wi=i; m=1, n=2
in (4,4)-Murngin: x*=wi=i; m=2, n=2
in (6,4)-Murngin: x*=w%=i; m=2, n=3.

As before (15.4) we now let K denote the type of female relative
exchanged and let p,, p; be the two exchanging males, who are therefore
in the KH-relation to each other. Since wi*=i and therefore wir=hir=i,
it follows that x*»h*»=i, so that x*»h** is a full circuit of segments begin-
ning and ending with py’s segment. Thus the half-circuit x™h™ will take us
from p, to p;. So we have x*h"=kh or k=x"ht-1=x™(§x)*-l=xmir-ign-1,
But x#7=i implies x*=x-", so that k=xt=n-ige=i,
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Substituting the appropriate values of m and n gives:

in Kariera k=%xy'=%, 1Kp=Xp=D (cf. 13.2)

in Karadjeri k=x§=79, 1K= pYp~p )Y p=pZD

in (4, 4)-Murngin k=Zxy, - (Kp=XY¢=puDD

in (6, 4)-Murngin k=x'yi=7y2, ;tKgﬁ:ﬂ?Y’gi:J??gf::ﬂZDD.

Thus Kariera has D-exchange, Karadjeri has ZD-exchage, (4,4)-Murngin
has DD-exchange and (6, 4)-Murngin has ZDD-exchange.

These exchanges may be traced out on the corresponding kingraphs;
e. g. the ZDD-exchange for (6,4)-Murngin either on Figure 16.10 or on
Figure 16.9. On Figure 16.10 the male p, will be found at the point labeled
Xy® at a distance yyh=yyyx from p, at the point i, and then the same path
yyyx starting now from p, will bring us back to p,. On Figure 16.9, drawn
in terms of x and w, we may replace §=(xw)-! by wx and then trace out
yyh=(wx)*w=xw3, bringing us to p, at the point labeled x*w*3, which is
seen to be symmetrically placed with respect to the starting-point p,.

In view of these results it would be interesting to ask the field-workers
whether, for example, the Karadjeri actually refer to their system as ZD-
exchange. As for the Murngin we have the clear-cut statement from
Shapiro that they “consciously practice ZDD-exchange.”

On discovering that his theoretical solution of the sevenline Warner
problem was now supported by Shapiro’s discovery of six-clan circular con-
nubia and ZDD-exchange, Liu published the theory in his English-language
book [1970], with the comment “the extraordinary fact reported by Shapiro
that a sister’s daughter’s daughter exchange-marriage is practiced in the
Murngin society needs no more be an enigma.”

16.13 Choices between giver and taker kinterms. But Shapiro’s articles
contain more evidence for the correctness of Liu’s theory. Although he
nowhere mentions the general problem of deciding between kinterms on the
left and right he does make one relevant statement:

whether nati-elker (or momo-elker) or due-elker is applied to a given
individual whose mother is gurrong is dependent largely upon considerations
of relative age, which need not concern us here.
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This isolated statement is truly tantalizing, since the question is import-
ant not only for the Murngin system but for all connubial complexes as
well (18.6). Let us iry to see just what form the consideration of relative
age might take and what might be meant by “largely”.

From the point of view of an ego in clan W, the two clans W, and
W, are giver clans, for which ego will use giver kinterms, i.e. terms taken
from columns W, and W, of Warner’s chart; and W_, and W_, are taker
clans, for which ego will use taker kinterms from the W_, and W_,
columns. But the clan W, is both giver and taker, so that our question
can be worded: will ego use the giver kinterms gawel | arndi and nati-
elker | momo-elker from Warner’s rightmost column or the taker kinterms
waku and duo-elker from his leftmost column?

To investigate this question we must further examine Shapiro’s state-
ments about ZDD-exchange marriage, with the help of his diagram repro-
duced as our Figure 16.13a.

T
A O

O A
/ A
O l\ .i O
N
ey i
A O O A

Males are represented triangles, females by circles the
lines with arrowheads are both matrilines and wife-lines

Figure 16. 13a  ZDD-exchange (Shapiro’s).

If we confine our attention to the eight persons directly concerned,
namely ego, ego’s Z, ego’s ZD, ego’s ZDD and similarly for alter, the same
situation is shown by Figure 16.13b, in which the subscripts 0 and 1 refer
to the two matrilines M, and M,.
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Figure 16. 13b. Alternative diagram for ZDD-exchange.

Let us now recall the general principle (cf. 3.6) that if ego is linked
to alter by two Kinchains if different length, then ego will base his choice
of kinterm on the shorter chain.

Let us apply this principle to ego=p, and alter=g, in Figure 16.13b.
By tracing out we see that g, is both WMM (XYYY) and ZDDHZ
(JYYYXJg) to p,, where the WMM-path running through the two linking
relatives s; and r, in the giver clans W, and W, is shorter than the ZDDHZ-
path through py’s sister and three linking relatives ry, s, p, in the taker
clans W_; and W_,. Consequently, p, will regard g, as his WMM, not his
ZDDHZ, and will therefore apply to ¢, the giver kinterm (momo-elker) on
the right of Warner’s chart, rather than the taker kinterm on the left.

Convesely, p, is both DDH and BWMMB to g,, so that ¢, will regard
po as her DDH, linked to her through her taker clans, and will therefore
apply to p, the taker-kinterm due-elker.

But now consider p, and p,. Here each of them is both ZDDH and
WMMB to the other, so that the taker chain and giver chain are of equal
length. Since Shapiro says that the decision depends on their relative ages,
we conjecture that ego will apply the giver term nati-elker to alter if alter
is older than ego, and the taker term due-elker if alter is younger than ego.
This admittedly uncertain conjecture is based on the fact that the columns
on the right distinguish sex of the referent but columns on the left do not
(cf. the giver terms gawel | arndi with the taker term wakux) and in kinship
systems throughout the world ego makes much less distinction among youn-
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ger relatives than among older.

Consequently, Shapiro’s statement that the choice of kinterm depends
“largely on considerations of relative age” can now be reworded: the
choice depends on the relative length of kinchains through giver and taker
clans, and when these lengths are equal it depends on the relative age of
ego and alter.

16. 14 Mother-in-law exchange. Shapiro’s account of a ZDD-exchange
takes the form of a narrative of successive events. He tells us that the
natives themselves regard the transaction as a ceremonious bestowal on a
male in one matriline, call it M,, by males in the other line, call it M,,
followed by an equally ceremonious reciprocal bestowal by M, on M, and
that these ceremonies are bestowals not of a wife, or at least only indirectly
so, but of a future mother-in-law. In order to follow Shapiro’s narrative
more easily, let us denote the two male beneficiaries by p, and p,, their
sisters by g, and g,, their daughters by r,, r, and their sisters’ daughters by
s, and s;, (see Figure 16.13b) and finally, since the choice of kinterms
depends “largely on relative age” let us assign the following dates of birth
to these eight persons:

Po: Burg: July 1900 pit Nga_g: January 1900
qo: Bury: July 1901 q,: Nga_g: January 1901
ro: Kaiy: July 1915 ry: Kary:  January 1915
5ot Baly:  July 1930 5;: Bul;:  January 1930

Shapiro’s narrative can than be presented as follows. We suppose that
qo» a sister of p,, was married in 1913 at the normal age of ten to twelve.
Then in 1919 her daughter ry, now four years old, is bestowed by p,, i.e.
the MB of r,, on a male p, in the other matriline, not as p,’s future wife
but as p,’s future mother-in law. That is to say, at a special ceremony
and with the advice and consent of the girl’s mother p, and of close
male relatives in the matriline M,, the male p,, now about twenty years
old, bestows on p;, his approximate contemporary in the other matriline
M,, the right of marriage, if p, subsequently chooses to exercise it, with the
future daughters of the four-year-old girl »,. In Shapiro’s words [1969],
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“he has first claim to all daughters she will eventually bear.” To this
ceremony Shapiro [1969] gives the name “mother-in-law bestowal”.

Then let us suppose that in 1930 the girl r, now fifteen years old, gives
birth to her first daughter s, If p, chooses to exercise his right, he will
begin to cohabit with s, about 1940, when he is forty years old and she
“is about ten or twelve years old,” in accordance with the common custom
among Australian aborigines that the older men pre-empt young girls for
their wives (cf. 16.8).

To emphasize the importance of matriliny, Shapiro points out that in
such cases the young girl’s father, whom we may call &, (cf. Figure 16.11)
because he is the husband of 7, and is therefore in matriline M,, has no
authority over the disposal of his daughter s,; the marital fate of a girl in
the matriline M, depends entirely on persons in her own matriline and not
on her father, who is in the other matriline. Shapiro writes [1968: 3517:

in discussing this institution, informants did indeed refer to it as ZDD
exchange (gutarrana gurrupanmirri, cf. 16.3). However, since the initial
object of bestowal in northeast Arnhem Land is a mother-in-law rather
than a wife, it can also be seen as an exchange of sister’s daughters.

If p, reciprocates by bestowing his ZD on p, as p,’s future mother-in-
law, the whole transaction will be regarded as a fair exchange of economic
goods between the two matrilines From the point of view of the patriclans
this ZDD-marriage exchange in a 6-regular connubium is indirect, since ego
in W, takes his wife from W, but from the point of view of matriclans the
exchange is direct, since ego in M, gives his ZDD as a wife to alter in M,
and receives alter’s ZDD in return. Although the six patriclans are overt,
i.e. there are specific names for them because they are partilocal and
patrilineal, nevertheless it is the two latent, unnamed matriclans that play
the dominant role in marriage arrangements in a 6-regular connubium.

The occurrences of kinterms from Warner’s left and right columns are
then explainable as in Table 16.14.

If one include the two husbands h, and h,, although Shapiro tells us
that they are powerless to affect the marriages of their daughters, then
ZDD-exchange marriage involves the persons listed in Table 16,14,
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Table 16. 14a Choice of kinterms from the left and right columns
of Warner’s bond

Ego Alter Choice of kinterm Reason

Po 71 giver » is older

P Po taker ps is younger

Po q1 giver giver path is shorter
q Do taker taker path is shorter
P da giver giver path is shorter
o n taker taker path is shorter
o T giver q, is older

e qo taker s is younger

ro r giver r, is older

r ro taker ry is younger

8o 51 giver 5, is older

5 5o taker So 18 younger

Their interrelationships can be conveniently traced-out on Figure 16.14
(which repeats the relevant part of Figure 16.11), and then the correspond-
ing kinterm can be traced-out on Figure 16.3b.

To verify, for example, that g, is actually the DHZ of r,, we start at
#y in Figure 16.14, run along the matriline against the arrow to ry’s daugh-
ter s,, then along the wife-line, again against the arrow, to s,s husband p,,
where we find that g, is sister to p, and therefore DHZ to r,.

To verify that gurrong is the corresponding kinterm, we begin at the
ego-box in Figure 16.3b, go down diagonally to waku for the D, then hori-
zontally to the left for the H and remain motionless for the Z, where we
find the kinterm gurrong, as desired.

To show that p, and p, are in the ZDDH-relation to each other, we
begin at either one of them in Figure 16.14, move two steps counterclock
wise on the matricycle to reach ZDD, and finally move along the husband-
line, thereby arriving at the other of the two exchanging males p, and p,.
Tracing out the ZDDH-relation on Figure 16.3b then gives us due-elker on
the left on Warner’s chart, for the younger of the two, and nati-elker on
the right, for the older,
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Figure 16.14 The ten persons involved in ZDD-exchange marriage.



CHAPTER XVII

Other Murngin Marriage

17.1 The (4, 4) connubium. Let us now consider the other kind of
connubium discovered by Shapiro, namely “four clans marrying in a circle”
(16.6). As generating relations for the group of sectional relations in this
(4,4)-case we will have x4=i because each clan still has four subsections
and wt=i because there are now four clans in the circle, and again the
group will be commutative, with xw=wx. Thus the sectional kingraph can
be drawn as in Figure 17. 1a.

Figure 17.1a 4-regular connubium in terms of x and w. All cycles clockwise.

The four clans, or patricycles, in Figure 17.1a may be described as

179
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follows:

W, is the clan of ego’s B or Z, and of ego himself or herself
W, is the clan of ego’s BW, or W if ego is male
W_, is the clan of ego’s ZH, or H if ego is female
W,. is the clan of ego’s BWBW (or WBW if ego is male)
or ZHZH (or HZH if ego is female)

Thus ego’s clan has one direct giver clan W,, one direct taker clan
W_,, while one clan W,, is both indirect giver and indirect taker.

In order to obtain generating relations for the corresponding group in
terms of x and y, instead of x and w as just above, we set w=Xy in wi=i,
obtaining (Xy)*=Xty¢=y¢=i. Thus the desired relations are x4=y¢=i and
the corresponding kingraph can be drawn as in Figure 17. 1b.

Figure 17. 1b The 4-regular connubium in terms of x and y.

17.2 Three keys to the decipherment of Warner’s chart. The question
now arises; how do the four patrilines in a (4, 4)-connubium fit into
Warner’s seven-line chart, or rather, as we now know, into his six-line
chart. Liu’s answer is that Warner’s chart is not specifically a six-line
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chart at all, but rather a chart with any even number of lines, 4, 6, 8,...
greater than two, since the natives tell us (cf. 16.4) that the chart can be
extended as far as desired both to left and right. Thus various scholars
considered Warner’s table as containing 7, 9, 11,...lines but no one con-
sidered it as a table for 5 lines as well, until Liu theorized in 1967 that the
five central lines form a kinterm table for a connubium of 4 clans, as in
Figure 17. 2.

[ ] ] [ 1

kutara kutara == dos due = mariking ma ke s muiie patlh = mari mari ==
: b S
-FhZf}I'2 FMZUS FBlD F'SZD Fez b FH MF MM MMB
gurrong gurrong T Waku vaku = mohul-b bapa == arndi gawa| = mokul=r mari-e =
2 2
Fiz0? Prps | FPzo Fs Fz F H g 1o s
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!

kutara kutara = due due = yeppa wawd =z galle  galle = mari mari =
P Fos | o s z iRl bep s | wesp  les?

e
;

qurrang gurrong = waku waku = galu gatu = arndl gawe | =mokul~r mari=g¢ =
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)

kutara kutara = o _"‘";"“i"'Y’*‘"m :
7 aminyer maraitcha 2 3 2.3 gy
ip Z0s 0o D5 5D 55 MISTD MBS HBS"D MBS

Figure 17.2a Warner’s chart for a 4-clan connubium

Thus the decipherment of Warner’s chart rests on three assertions:

i) The seven-linc chart applies only to six-clan connubia and is in fact
a six-line chart since the kinterms in the two outside lines are applied to
persons in the same clan. It was the unwitting but universal assumption
that different lines of kinterms must apply to different clans that led to
Webb’s perplexity (16.5) about failing to find the cycling affirmed by his
native informants,

1) The five interior lines, when taken out from the seven as in Figure
17.1, themselves form a kinterm chart applicable to four-clan connubia.
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Figure 17.2b Kinterm chart for 4-clan connubium.
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iil) Warner’s chart is in fact not one chart but arbitrarily many, since
we are informed by Warner and Webb that it can be extended laterally to
any desired number of columns on the left and right according to the rule
(in our notation):

W, =W =W; =... =W,
Wy =W, =W, =...=W,
W_ =W =W s=...=W_,
Wos=Wo,=Woo=...=W_,

Thus from the (2n-+1)-central lines in the extended chart, by amalga-
mating the leftmost and rightmost columns in the same way as for five or
seven lines, we obtain a kinterm chart for a 2r-connubium with any even
number of clans, eight, ten, twelve etc., and it was this situation that the
natives were trying to make clear to Webb when they insisted on the two
seemingly contradictory statements that Warner’s table cycles and also
extends arbitrarily for to left and right.

17.3 Giver and taker kinterms in the (4, 4)-clan. Again Shapiro’s dis-
coveries have provided the ethnographical evidence. In connection with his
emphasis on matriliny he draws the matrisequence in Figure 17.3. From
this diagram we may read off the matricycle (for an ego in subsection
W,) as follows:

M =andi (in W,) , M2=mari or kutara (in W,,),
Mé=waku (in W_;,) Mé=yeppa=M°=Z (in W,), Ms=M etc.

In 16.13 we discussed Shapiro’s question “whether natielker | momo-elker
or due-elker is applied to a given individual whose mother is gurrong” A
corresponding question here, not mentioned by Shapiro since he does not
make the distinction between (6, 4)- and (4, 4)-connubia is “whether mari
or kutara is the kinterm to be applied to a person who is the mother
of gawel| arndi” Liu’s tentative suggestion is the same as before: if ego
is connected to his MM and his ZDD, actual or classificatory, by chains of
equal length, ego will choose the giver term mari for persons older than
ego and the taker term kutara for persons younger than ego.
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Figure 17.3 Igo’s matrisequence (from Shapiro)

17.4 Daughter’s daughter exchange. In 16.12 we have found that a
(4, 4)-Murngin connubium has DD=XY¢ exchange, in contrast to the ZDD
=pJYY¢p~YY¢p exchange of the (6, 4)-Murngin connubium. Then just as
the natives describe the (6,4)-system as kutara-exchange (i, e. ZDD-
exchange), so it would seem that they must describe the (4, 4)-system as
kaminyer-exchange (i.e. pgDD-exchange) but we have no information on
this point.

In contrast with the native awareness of Z-, ZD- and ZDD-.exchange
in various societies, there is no indication that this DD-exchange has any
social significance. In the (6, 4)-case Shapiro’s argument (16.14) shows
that the marriage arrangements are regarded by the natives as being not so
much an indirect exchange of wives as a direct exchange of mothers-in-law
between the two matrilines in the system, but there seems to be no reason
to believe that in the (4, 4)-system the marriages were regarded as any
kind of direct exchange among the four matrilines involved in this case.
Shapiro’s remark that the father has no control over the disposal of his
daughters apparently refers only to six-clan connubia, since Warner’s
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statements [1937: 75, 92, 94 etc.] imply that in many cases marriages are
arranged by the fathers.

17.5 Right marriage. Up to now we have been examining regular
Murngin marriage, as defined by Webb (our 16.8). But this concept is not
mentioned by Warner himself. He discusses only right and wrong marriage,
which may be defined as follows.

In the Murngin system the two moieties have the distinctive names Dua
and Yiritcha, and similarly the eight subsections Buralang, Warmut etc.,
but the sections (sets of alternate generations in the moieties) have only
the compound names Burlang-Balang, Warmut-Karmarung, Bulain-Ngarit
and Banaka-Kaijark (cf. 2.16). If we abbreviate that names of these four
sections to Burbal, Warkar, Bulnga and Bankai, a connubium of four clans
Wo, Wy, W_,W,, marrying in a circle will appear as in Figure 17.5.
Such a Murngin connubium is said to have right marriage, or to be a
4-right connubium, with similar definitions for 6-right, 8-right, 10-right, ...
connubia.

Warkarts
Burbaltsy
..... LR

et i
- =2 fe,
. - B
' .
K

Eankai1§ * Bankai_1
Bulnga1; wl w-IEBurnga_]

Warkarg
Burbalg

Figure 17.5 Mourngin 4-right connubium.
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Thus if ego is in Buralang, the rules for right marriage give him a
choice of wife from either of the two subsections, namely Bulain and Ngarit,
of the Bulnga section. If he marries into Bulain, the marriage is regular
(16.8) and if into Ngarit, it is alternate. Thus right marriage is simply
the combination of regular and alternate. All other marriages, into a
wrong subsegment or outside of the tribe, are wrong.

From Figure 17.5 we see that the group for a Murngin right marriage
connubium of four clans is the same as the Karadjeri group (15.1) with
the defining relations x!=wi=i. '

Similarly a 2n-right connubium will have x*=w2"=i, in contrast to
regular marriage with x*=w®"=i, and the decipherment of Warner’s kinterm
chart will be the same for right as for regular marriage.

17.6 Wrong marriage; sister-exchange. We must now give some atten-
tion to the numerous kinds of wrong marriage. As we have seen, all
right marriages (regular or alternate) are with MBD, and since wrong
marriages are simply any other kind, they do not easily lend themselves to
mathematical analysis. However, among the many kinds incidentally men-
tioned by Warner, it appears that direct sister exchange of Kariera type is
the commonest; for example, Warner says [1973: 113] that ego and ego’s
MMB frequently belong to the same clan, as would always be the case
with direct sister-exchange.

As an example of Z-exchange and ZDD-exchange in one diagram con-
sider Figure 17.6 [Shapiro, 1968] showing an actual sequence of marriages
in which two males, known to Shapiro, exchanged ZDD. Shapiro calls them
No. 19 and No. 500 but for easier comparison with our Figure 16.11 we
have changed their names to p, and p,. In Figure 17.6 the arrows run from
each clan to the clan which is not only its wife-clan but also, as always
with MBD-marriage, its mother-clan. Thus we have p,Zq,Dr,DsHp and
similarly p,Zq,Dr,Ds,Hp,, or more concisely p,ZDDHp, and p,ZDDHp,.
Thus the clan Djambarpingu, represented by p,, has a ZDD-exchange with
Daiuror, represented by p,.

On the other hand, the brother of r, call him #, who is also in
Djambarpingu, gives his sister r, to the male ¢, in Bilkili and in return
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Figure 17.6 Shapiro’s diagram (slightly modified) showing both
ZDD-exchange and Z-exchange (cf. Figure 17. 3).

receives #,’s sister s;. Thus Djambarpingu, represented by u,, has a Z-
exchange with Bilkili, represented by ¢,.

17. 7 Other wrong marriages, If there were no wrong marriages
the kinterms given in ego’s column on Warner’s chart would refer to all
members of ego’s patriclan. But a wrong marriage causes ego to apply
kinterms from other columns to members of ego’s own clan.

Thus in Shapiro’s example (Figure 17.6) if the marriage were regular,
the male #; would be in W, from the point of view of p, as ego in W,
i.e. #, would be in the column which in Warner’s chart has the kinterms
mari in even generations and mari-elker | mokul-rumeru in odd. But in fact,
as a result of p)’s wrong marriage, #, is in the same clan as p,=ego, so
that «,, being one generation above ego, is a classificatory father to p,.
However, the actual relationship between u, and p, may be quite distant,
e. g pXm+1JRmy, with a fairly large value for m. Furthermore, the
clans W,, W,,...are to be considered as made up of subclans, so that if
m is large u; will be in a different subclan from p,, i.e. their nearest com-
mon ancestor may be so many generations above them that subclans have
been formed in one or more intermediate generations (see 2.13).
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Now the kinterms are assigned (16.8) as though all marriages were
regular. Thus ego=p, will apply the kinterm mari to ego’s classificatory
father u,, even though u, is in ego’s own clan; and to the patridescendants
of u, ego will apply the kinterms mari in the cven generations and mari-
elker | mokul-rumeru in the odd. In other words, some of ego’s collateral
relatives in ego’s own clan, but not in ego’s own patrilineal line, will be
called by kinterms from column W,, rather than from column W,.

Warner [1937: 27, n.13] describes this situation by saying that ego’s
“clan...has a mari and mari-elker and a mari and mokul-rumeru for the
male and female relatives in one’s [i.e. ego’s] clan other than one’s
own patrilineal line.” In another passage he expresses the same idea by
saying that such marriages create a mari—mari-elker | mokul-rumeru line of
descent for ego on ego’s clan.

Then in order to illustrate what may happen as a result of even fur-
ther wrong marriages, he envisages the case that ego’s male mari, our u,,
makes a wrong marriage with a waku (=ZD) in W_;. The children of
this marriage will be in ego’s clan W, because their father is in W,, and
for the same reason they will be in the mari—mari-elker part of that clan,
a subclan of W, which Warner simply calls the mari—mari-elker clan. But
if their mother, in W_,;, had made a right marriage, these children would
be in W_,, so that ego will address them by the gurrong-kutara kinterms in
column W_,, thus creating a gurrong-kutara line of kinterms on the mari—
mari-elker part of ego’s clan.

As Warner says [p. 27]:

A clan that would for a period have only a mari and marelker and a
mari and mokul for the male and female relatives in one's clan other than
one’s own patrilineal line could by a wrong marriage of the male mari —
let us say, to a waku — create a gurrong-kutara line of descent for ego in
the old mari-marelker clan.

Such would appear to be the interpretation, with the help of some
mathematics, of sentences of Warner’s and of his kinterm chart as a whole
that have hitherto been given up as hopeless. The history of science is
full of examples to show that neither field-work alone nor mathematical
theory alone is an adequate substitute for suitable alternation of both.



CHAPTER XVIII

Connubial Gomplexes

18.1 Eastern Sumba complex, We now turn to the third kind of
marriage-network listed in Shapiro’s first article [1967: 354]: “most of the
clans in the entirc Murngin arca constitute a single large marriage network”
(cf. our 16.6). To such a large network of interlocking cycles we give
the name “connubial complex”. If C and C’ are any two clans in such a
complex, a chain K is said to link clan Cto clan ’ if K links some person
in C to some person in C’,

The largest known example of such a connubial complex is the Eastern
Sumba system [Necedham 1957] as in Figure 18. 1, where we have re-arranged
Needham’s original diagram so as to avoid criss-crossing of lines. The system
is seen to consist of 24 clans with 14 interlocking cycles, 3 of them of
length three, 3 of length four, 3 of length five, 3 of length six and 2 of
length seven. Clan 1 takes wives from five other clans, namely 2, 4, 6, 11 13
and gives wives to only one, namely clan 3, a fact which would indicate that
clan 3 is about as populous as 3, 4,6, 11 and 13 combined. Clan 1 belongs
to eight cycles, clan 12 to eight, clan 6 to four etc. Since Eastern Sumba
does not have moieties, the cycles are not necessarily of even length.

18.2 Murngin complex, We have seen that the Murngin system
certainly contains four-clan cycles and six-clan cycles, and comparison with
the Sumba system suggests that some of the Murngin cycles may be of
considerable length 8§, 10, 12, ....

To emphasize the similarities and differences of the Murngin and Sumba
systems, we have constructed Figure 18.2 by making the minimum number
of changes in the Sumba diagram necessary to convert it into a possible
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Figure 18.2 Possible Murngin connubial complex with no wrong marriage.
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Murngin diagram; i.e. arrows are drawn only from odd-numbered clans
(Dua moiety) to even-numbered clans (Yiritcha moiety), with the result
that all cycles are now of even length. To this end we have inserted clan
26 between 1 and 3, clan 28 between 1 and 11, clan 30 between 5 and 7,
clan 32 between 13 and 19, and clan 34 between 1 and 13. Then in the
lower left corner we have added new cycles so as to bring the entire number
of clans up to 40, leaving the other 20 of the 60 Murngin clans unrepresented
in order to lighten the drawing. In this way it is possible for a Murngin
tribesman to travel from one corner to the other of the immense, sparsely
populated Arnhem Land in northern Australia, a distance of more than 300
miles, without encountering any person with whom he cannot establish
kinship through a sufficiently long chain of linking relatives.

18.3 Murngin kinterms. In practice, one Murngin male (ego) will
determine the correct kinterm for another (alter) in the following way (cf.
1.2

We suppose that ego is in the Buralang subsection of clan 1, which we
take to be the Djambarpingu clan in the Dua moiety, so that ego will call
out Djambarpingu-Buralang. 1In the simplest case, namely that alter is in
ego’s clan, the kinterm will be as listed in column W, of Warner’s chart
(Figure 16. 3); namely wawa | yukiyuko if alter is in Buralang, bapa if in
Karmarung, gatu if in Warmut, and marikmo | maraitcha if in Balang.

If alter is in a clan that is a direct giver to ego’s clan (nos. 2, 4, 6, 28
or 34 in Figure 18,2), the kinterms are those listed in W,: galle if alter
is in Bulain, gawel if in Banaka or Kaijark; but if alter is in Ngarit, a
discussion will be necessary to determine whether the shortest chain linking
ego to alter is of height two, in which case the kinterm is nati, or of height
minus-two, in which case the kinterm is galle.

Similarly, if alter is in a clan that is a direct taker from ego’s clan
(no. 26 in Figure 18, 2), the kinterms can be read off from column W_, in
Figure 16. 3, due if alter is in Bulain, and waku if alter is in Banaka or
Kaijark; but if alter is in Ngarit, the term will be due if the linking chain
is of height two and kaminyer if it is of height minus-two. In these three
central lines the influence of the four subsections in each clan is apparent
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in the four-generation periodicity in ego’s clan and in the exceptional terms
nati | momo in the direct giver and kaminyer in the direct taker. In the
more distant clans the choice of kinterm is already determined by alter’s
section.

For the more distant clans there are the following possibilities. For
an alter in the Dua moiety ego must choose a kinterm from W, if alter’s
clan is an indirect giver to ego’s (the termsin W,, Wy, Wy, ... are identical
with those in W;), and from W_, if alter’s clan is an indirect taker; and
for an alter in the Yiritcha moiety, ego must choose from W, or W_g. If
alter is in the Buralang-Balang section of Dua (i.e. if alter calls out either
Buralang or Balang), the term chosen from W, will be mari and from W_,
it will be kutara, but if alter is in the Karmarung-Warmut section, the term

from W; will be mari-elker and from W_; it will be gurrong. Similarly, if
alter is in the Bulain-Ngarit section of the Yiritcha moiety, the term from
W, will be nati-elker and from W_; it will be due-elker; but if alter is in
the Banaka-Kaijark section, the term W, will be gawel and from W_; it will
be waku. Finally, if alter’s clan is both indirect giver and indirect taker
from ego’s clan, we conjecture that ego will choose the giver terms if alter
is older than ego, and the taker terms if alter is younger.

To take one example, let alter be in the Bangardi subsection of clan
30, which is an indirect giver to ego’s clan because the smallest cycle
running from clan 1 to clan 30 in the giver direction, i. e. along the arrows
in Figure 18,2, is 1, 26, 3, 12, 5, 30, 7, 8, 9, 11, 28, 1, with 30 nearer the
beginning than the end. Thus ego will choose the kinterm gawel. Ordinarily,
ego will know from memory whether alter’s clan is a giver or taker to his
own; otherwise an ecxtended discussion may be necessary to find a chain of
linking relatives.

18.4 Purum complex and kinterms. A much simpler connubial complex
is to be found in the Purum society on the border between India and Burma
(see Figure 18.4a). Here we have five clans in three cycles, each cycle
being of length threec, with the clan Thao in all three, Makan and Marrim
in two each, and Parpa and Kheyang in one.
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Marrim < Parpa
Thao
/ ‘\.
Makan 2 kheyang

Figure 18.4a The Purum connubial complex.

The kinterms for this Purum system [sce e. g. Needham 1967, 76] may
be arranged as in Figure 18, 4b.

pu pu‘p! pu|pi
P s
F il ¥ P .
7
palni pu'nu pulpi
s 4 o P
ta|u .
tu tu —ng—u—- Dulnau pu|p1
"4
7 s ¥ 7
tu tu sha Pulnau
Fd ' g ”
tu tu tu
" W- Wo Wi W,

Figure 18.4b Purum system.

18.5 Jinghpaw (Kachin) and Siriono. In other cases we know the
arrangement of the kinterms but do not know how many clans are involved
nor how they are linked to one another. For example, in the Jinghpaw
system (Jinghpaw is one of the dialects spoken in the Kachin Hills area in
Burma) the kinterms are arranged as in Figure 18, 5a [Leach 1945:65], and
for the Siriono in Bolivia [Holmberg 1969] they arc as in Figure 18. 5b,
where akw stands for akwanindu | akwani.
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Figure 18, 5a Jinghpaw (Kachin) system.
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Figure 18.5b Siriono system.
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In all such cases, where the kinterms do not show periodicity, we assume
that the terms for all generations above G, are the same as for G,, and
for all generations below G_, they are the same as for G_,. Also we assume
that the tables can be extended to left and right by repeating the leftmost
column as often as desired outwards on the left and the rightmost column
outwards on the right (cf. 16. 4).

18.6 Kinterms in any connubial complex. To find the kinterm applied
by a given ego to a given alter in a system of patriclans with MBD marriage,
we must find the shortest chain of the form W=, with » positive, negative
or zero, linking ego’s clan to alter’s clan, where we recall that in a merging
system W= means (WB)* or (WB)*'W or (BW)* or W(BW)=-1 according
to the sex of speaker and referent (cf. 17.1). Then the correct kinterm
occurs in column W, of the kinchart, in alter’s generation. If there are
two such shortest chains, one with n positive and one with »n negative, we
again do not know the principle on which the choice is made and assume
that it may differ from one society to another.

For example, in the Purum system (Figure 18.4), let ego (male) be
in Makan and alter (female) in Thao, and let ego be connected to alter
not only by a string equivalent to W2, i. e. alter is ego’s classificatory WBW,
but also by a string equivalent to W, i.e. alter is ego's classificatory ZHZ.
Then ego must choose between the WBW-term pi and the ZHZ-term ru, and
in this case ego will choose iz because the marriage-distance from clan
Makan to clan Thao is greater along the forward path W* than along the
backward path W-!. In other words, ego chooses a kinterm to the left
because alter’s clan is a taker form ego’s clan.

On the other hand, let alter be in Parpa, and again in the same
generation as ego. Then the shortest forward path linking ego’s clan to
alter’s clan is of length three; namely from Makan to Kheyang to Thao
to Parpa, or form Makan to Marrim to Thao to Parpa, and the shortest
backward path is of the same length; namely from Makan to Thao to
Marrim to Parpa. Thus ego must choose between pu in column W, (with
the same kinterms as W,) and fu in column W_,. Since pu | pi is listed
only for G, and higher generations, and m only for G, and lower, we
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tentatively assume that ego will choose pi if alter is older than ego and tu
if alter is younger.

Now let the first of these two cases (namely that a male speaker is
linked to a female referent by a string equivalent to W: and also by a
string equivalent to W) be applied to the Jinghpaw system, where the
names of the clans are omitted, and to the Siriono, where the clans are
completely latent. But the same reasoning as before, ego will choose the
Jinghpaw term hkri on the left side rather than ni on the right side, and
the Siriono term ari on the left rather than @kwani on the right.

In the ambiguous case, where there are two shortest chains, each of
length three, we tentatively assume, from the appearance of the Jinghpaw
chart, that ego will choose a giver term for alter if alter is older than ego.
On the other hand, the Siriono chart appears to give a clear indication of
the opposite procedure, since the terms ami | ari for ego’s generation in the
left-most column apply to G, and higher generations, and the terms
akwanindu | akwani (abbreviated to akw in Figure 18, 5b) apply only to G,
and G_,. But these conjectures can only be settled by asking questions in
the field.

18.7 The Siriono case. The Siriono tribe is particularly interesting
both for its unusual kinship terminology and for its awesome technological
backwardness. Although their rain-forest territory is criss-crossed with
streams that often become too broad for wading, they have built no boats:
they have never learned to make fire, which they must borrow from unfriendly
neighbors and then preserve as carefully as possible, and their entire existence
is spent so close to starvation that their speech, thoughts and action, and
even their dreams, are dominated by an ever-insistent preoccupation with
food. Their only social organization consists of small exogamous patrilineal
groups which can be called clans only in the technical sense (2.13). We
are told that they practice MBD-marriage and therefore, since every member
of the tribe appears to have a kinterm for every other member, they form
a connubial complex, but we know nothing about the details.

The kinship terminology is simple, with ten terms distributed as in
Figure 18.5b and one special affinal term nininisi for actual spouse. Note-
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worthy also is the special role of yande for potential spouse, i.e. MBD of
a male ego and FZD of a female ego.

The position of the kinterms in Figure 18. 5b suggests that the kinship
terminology may have evolved as in Figure 18, 7a, b, ¢, d. e.

ami |ari
|
|
1
. : I il |
ami|ari (t':ru)ami‘arn(r:Zi) (nru)arnilari(ezi)
:  Ehriita Lo
| | |
| 1 |
anongge anongge anongge
[ | |
| | |
] 1 |
ake (edidi) ake (edidi)akw
T
|
|
ake
a) b) c)

Fignre 18.7a,b,¢ Evolution of the Siriono system.

For in Figure 18. 7e we first note the lack of any distinctive term for
cross-cousin, since yande is a late introduction to indicate potential spouse.
This lack suggests that Siriono was originally of generational type, and the
presence of the terms ami=mb and ari=fz in G, indicates that it was of
three-generational type as in Figure 18.7a. Then Figure 18. 7b introduces
the lineal terms eru=f, ezi=m and edidi=c. But the presence of these
lineal terms now distinguishes G, with four terms ami, ari, eru and ezi,
from G, with two terms ami and ari. Recriprocally, therefore, G_, became
distinguished from G_, by the introduction of the terms akwanindu | akwani,
formed from ake, at which stage we have reached Figure 18.7c. Then
the introduction of prescribed MBD-marriage produces Figure 18,7d, In
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Figure 18.7d,e Evolution of the Siriono system.
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this figure the anongge in the center means sibling, the anongge on the
right means wife and also brother’s wife and their siblings, and anongge on
the left means husband, and also sister’s husband, and their siblings. Since
a husband is usually older than his wife, the anongge on the right will
usually refer to persons younger than ego, a fact which may possibly
account for their being denoted by the terms akwanindu | akwani from the
next lower generation G_,, whereas the anongge on the left will refer to
persons older than ego and may therefore be denoted by the terms ami | ari
from G,, thus producing Figure 18. 7e. With the introduction of the term
yande for potential spouse we arrive at the final Figure 18. 5b.
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CHAPTER XIX

Aranda and Dieri Systems

19.1 Alternating direct systems. As we have seen, a Kariera connubium
has steady direct exchange, where "steady” means that ego marries into the
same clan as his father, and similarly for ego’s son and son’s son etc., and
“direct” means that if section S, takes wives from section S;, then section
S; takes wives from section §;, so that steady and direct together imply
bilateral cross-cousin marriage. On the other hand, a Karadjeri or Murngin
connubium has “steady indirect exchange”, which implies proscription of
bilateral cross-cousin marriage but prescription of matrilateral. In these
cases the 2n (four, six ete.) clans can be arranged in a circle in such a
way that ego marries into the clan in the next position clockwise. However,
many of 500-odd Australian tribes, and other tribes as well in Oceania,
proscribe marriage with a first cousin of any kind.

Most of these other systems have alternating direct cxchange, in which
the participating clans (three for Ambrym, four for Aranda or Dieri, six
for Vao, and theoretically any number) can be arranged in a circle in such
a way that each clan exchanges wives with the neighboring clan on one
side in one generation and with the neighboring clan on the other side in
the next generation. See Figures 19.2a, b, ¢, d, e for Aranda; 19.5 for
Dieri; 20.1, 20.2 for Ambrym; 20. 4 for Vao, Systems with direct exchange
of any kind necessarily have sister-exchange marriage but the type of female
cousin whom ego marries will be different (rom system to system (cf. 21, 1),

19.2 Diagram for the Aranda connubium. Commonest among all types
of connubia is the Aranda system, o be found in nearly every part of
Australia, including the Aranda tribe itself in the center of the continent

201
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from Lake Eyre northwards.

In the Aranda tribe the connubium consists of four unnamed clans in
two unnamed moieties. In one of the clans the two sections are called
Purula and Kumara, in another Ungalla and Umbitchana, in a third Panunga
and Appungerta, and in the fourth Uknaria and Bultara. We shall call the
four clans by the compound names Purula-Kamara, Ungalla-Umbitchana in
Moiety A, and Panunga-Appungerta, Uknaria-Bultara in Moiety B, and for
definiteness we assign ego to generation G, in the Purula section, whereupon
the eight sections are necessarily assigned as follows:

Moiety A
Compound-name of clan Even Generations Odd Generations
Purula-Kumara Purula Kumara
Ungalla-Umbitchana Ungalla Umbitchana
Moiety B
Panunga-Appungerta Panunga Appungerta
Uknaria-Bultara Uknaria Bultara

Then the four clans can be arranged as in Figures 19. 2a,

W Xl WRW

.......

" w

Fignre 19. 2a Aranda connubjum in terms of x and w.

By turning the patrilines outward we can conveniently arrange all the
eight sections around one circle and then insert the matrilines around two
squares as in Figure 19. 2b.
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W XK= XW XW

WXW ';.. e oY
e

Figure 19.2b Aranda connubium with x, y and w lines.

203

If we now wish to make a diagram with x and y lines only, we
encounter the purely geometrical difficulty that since y*--i the x and y lines
cannot be placed around the circumference of a circle, like the x and w
lines in Figure 19.2b. This difficulty can be avoided if we make a three-
dimensional drawing like the cylinder or thereby in Figure 19.2c, d, which

becomes Figure 19.2e when projected onto the plane of the paper:
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Figure 19. 2¢c,d, e Aranda connubium with x and y lines.

19.3 Aranda kingraph. The native marriage-rules prescribe:
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in the even generations

clan Moietz clan Moiety
Purula-Kumara in A exchanges wives with Panunga-Appungerta in B
Ungalla-Umbitchana in A exchanges wives with Uknaria-Bultara in B

in the odd generations

Purula-Kumara in A  exchanges wives with Uknaria-Bultara in B
Ungalla-Umbitchana in A exchanges wives with Panunga-Appungerta in B

In other words, in the even generations wives are exchanged between
Parula and Panunga, and between Ungalla and Uknaria; and in the odd
generations, they are exchanged between Kumara and Buliara, and between
Umbitchana and Appungerta, as indicated by the dotted lines in Figure 19. 3.

Ungalla
W XWX = XWX = Y2

2_ H g "
XYY" =wxw :: . =
Umbi tc.har'lez_‘ '7" —y \ - l xmjf_‘;:?a

\l
g P

y=wx

Appungerta ) /:‘Bultara
A | %
2 < 7 X Kumara
Panunga *-. \ s
i
Purula
y kalja | kwaia |* T
i aranga ( i'tia“___) wx=¥§ : amba
% _kata | wonna_ AWX=X¥ : tiimia (ankalla)
: alirra Iy ¢ / i
w=Xy: palla wxw=xy*: marra
=Y 2 kamuna | maia Xwxw=y* : ebmanna

* kalja also for FeBS, itia for FyBS etc.

Figure 19.3 Section names and kinterms for Aranda.
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Except for a few special terms like noa for actual wife or her actual
sister, and mbana for actual husband, the kinterms, as given under Figure
19.3, fit precisely into the section-system except that in the x-section
(Kumara, odd generation) there is one coverset kata | wonna for the positive
odd generations and another alirra for the negative odd generations, and in
Purula and Uknaria there are special coversets (bracketed in Figure 19.3)
for relatives in ego’s own generation G,.

19.4 Use of section-names to determine kinterms. An aboriginal ego
must be able to address a given alter by the correct kinterm. Spencer and
Gillen [1927: 55-61] gives thirty-two examples, sixteen of them showing
the terms applied by a Purula man to the men and to the women in the
eight sections, and sixteen showing the terms used by a Panunga woman,
Examples for the terms applied by a Purula male apeaker are:

to a Purula man:

kalja: eB, FeBS, MMeZDS, MFeBDS

itia: yB, FyBS, MMyZDS, MFyBDS, DSDS, SSSS
aranga: FF, SS;

to an Ungalla woman:

ipmuna: MM, MMBSD, FFZDD, DDZD, SDDD

and of the terms applied by a Panunga woman:

to a Bultara man:

marra:  HMB, DSS, FZDS, MBDS;

to a Kumara woman:

amba: D, ZD, SS8D, FFZD, FFDD, MZDD.

By tracing-out on Figure 19.2e, the reader may readily verify the
kinterms given here for these twenty-seven kintypes.

Since both ego and alter can be chosen in sixteen ways, i. e. as male or
female from each of the eight sections, among which Spencer and Gillen
choose the Purula man and the Panunga woman, it follows that if they
were to carry out their plan in full detail, they would need to give 256
examples. Since their thirty-two actual examples fill up more than six
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pages, their list of kinterms alone would require more than fifty pages of
their book. Yet all this information is already contained in Figure 19. 3.
For example, if an ego in the Umbitchana section encounters an alter in
the Kumara section, ego knows at once, as soon as they have called out
their respective section-names, that ego must address alter by the kinterm
ebmanna, as we can deduce from Figure 19.3 by noting that to get from
Umbitchana to Kumara we must trace-out the path y2, for which the
kinterm ebmanna is listed just below the diagram.

19.5 Cross-second-cousin marriage. To answer the question: what type
of female relative does ego marry in Aranda, we must find the shortest
collateral chains equivalent to W=XY. From the equation X=x and y=¥3
we might be inclined to say xy*=first-cousin-twice-removed, and this answer
among others is clearly correct. But in fact the marriage is never so
described, either by the natives or by anthropologists. Rather it is called
“cross-second-cousin marriage”, i.e. marriage of persons whose parents are
cross-first-cousins XY or YX. For, as can be verified at once by tracing-out
on Figure 19. 3, we have

w=yyXy (MMBDD)=yxy§ (MFZDD)=xx§X (FFZSD)=xyxX (FMBSD).

Clearly again each of these four answers is correct, but in fact the
natives use only the first answer, namely MMBDD, in describing their
marriage-system, for the following reason [Elkin, 1964: 100]:

this example is not selected at random from the possible marriages. It
expresses a significant fact, for in very many tribes with which I am
acquainted...the mother’s mother’s brother seems to be almost important
relation a person possesses. He is mother’s “uncle”, and takes a leading
part in arranging his niece’s (ZD’s) son’s initiation and marriage... . It is
his duty to find a wife or to see that a wife is found, for his niece’s son,
and one way to do that is to arrange for his daughter’s daughter to marry
him.

Then Elkin makes a further remark reminding us of a fact that speakers
of English are prone to forget, namely that all marriage rules are to be

understood in the classificatory sense. Ego’s classificatory MMBDD may in
fact be his actual MMBDD and therefore an actual second-cousin, or she
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may actually be a much more remote cousin, provided only that ego is
linked to her by a chain equivalent to the chain MMBDD (YYXY). Elkin
says [1964: 101]:

his [i.e. ego’s MMB’s] very position in ego’s mother's group of close
relations has led to a disinclination to marriage with his daughter’s daughter,
and so many tribes with the Nyul-nyul kinship system forbid marriage with
"own” second cousin, allowing it only with someone else, more distantly
related but classified with her,

19.6 The Dieri system. The (relatively rare) Dieri system is in all
respects the same as the Aranda, with interchange of patri- and matri-
concepts, i.e. of x and y and therefore of w (wife) and h (husband). In
Aranda the (patrilineal) moieties have no specific names but the eight
marriage classes have the names Purula etc. (see Figure 19.3), but in
Dieri the (matrilineal) moieties have the specific names Kararu and Matteri
and the eight marriage-classes are left unnamed. For definiteness we call
them A,, A,, By, B,, C), C,, D;, D,, where Aq By, Cy and D, are the even-
generation sections of the four clans A, B, C, D and A,, B, C,, D, are the
odd-generation sections.

The list of kinterms [Radclife-Brown 1914:55] is as follows:

1. yenku FF, FFZ, MMBSS, MMBSD, SS, SD, ZSDH, ZSSW
2. nadada MF, MFZ, MMBW, WMM, W, MMBDD, MFZDD, WB, DC
3. kami FM, FMB, WFF, FZS, FZD, MBS, MBD, ZSS, ZSD
4. kanini MM, MMB, WMF, WMFZ, MFZH, ZDS, ZDD

5. ngapari F, FB

6. ngandri M, MZ

7. papa FZ, MBW

8. kaka MB, FZH

9. tidnara FFZC

10. ngatamura MMBC, uS, uD

11. niyi eB, WZH

s
(]

. kaku eZ, WBW
. ngatata  yB, WZH, yZ, WBW

-
L
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Thus the Dieri system can be represented at in Figure 19,6 (cf. the
Aranda Figure 19.3), on which the reader is invited to trace-out some of
the terms in the kinlist. Just as the Aranda male marries his MMBDD
(w=yXy), so the Dieri male marries his FFZSD (w=x%yX), where w for
Dieri is obtained from w for Aranda by interchange of x and y.

Co .,
hyhy=yhyh=x"

T A

W L
_____ s
i
Ag
‘. ini (il kaku : 1 ;
i kanini ( ngatata ) vy kaka | ngandri
h=yx ; nadada yh=x : ngapari | papa
hy=X% : ngatamura yhy=yX%: kami
hyh=yx*: tidnara vhyh=x*: venku

Generating relations: y’=h’=x'=i, with x=yh

Figure 19.6 Dieri kingraph and kinlist.



CHAPTER XX

Ambrym, Vao and Kokata

20.1 The Ambrym connubium. The Ambrym connubium [Deacon 1927]
is a system with alternating direct exchange (19.1) like Aranda but with
three participating clans instead of four. In Figure 20.1 the three clans are
denoted by A, B, C, their even-generation sections by A,, B,, C, and their
odd-generation sections by A,, B,, C,. Thus males in the one generation in
clan A exchange wives with their clockwise neighbor B and in the next
generation they exchange with their counterclockwise neighbor C, as in
Figure 20, 1a. (cf. Figure 19.2a for Aranda.)

xw
BO:N\' ) / &
By Cy
Wx AR
Ayt

Figure 20.1a Ambrym connubium in terms of x and w.

Then in the same way as the Aranda Figure 19.2a was redrawn as
Figure 19.2b, so here we redraw the Ambrym Figure 29.1a as Figure
20. 1h,

20.2 Sections in Ambrym., For the Balap district in southwest Am-
brym, this situation is described by Deacon [1927: 329] in non-mathema-
tical language as follows:

209
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The population is divided into three clans called bwelem, Descent in
the bwelem is patrilineal: a man, his father, his father’s father, son, son's
son, and the children of all these belong to his own bwelem, similarly all
classificatory fathers, fathers’ sisters, brothers and sisters.... Each bwelem,
however, is divided into two “lines” [the native's expression for our “section”,
cf. the Jatmul lines in 22.3] such that a man, his father's father, his son’s
son (and sisters of all these) belong to his line, while his father, his son,
and his son’s son’s son belong to his father’s line, all in the same bwelem.
This two-line structure causes the father’s father to be called “brother” etc.
The three bwelem are referred to by a man as "my bwelem, my mother’s
bwelem, my mother’s mother's bwelem”.

WXWTRWXTY X

C1
Pl 3

wey? N -
By — 4 <

)
|
;n

Ao
i
I: w i XwW
X! WX x: y?
XW: WXW=XWX ¥t yxX

Figure 20.1b Ambrym connubium with x,y and w lines.

The natives also informed Deacon that the mother’s mother’s mother
“comes back” to a man’s own bwelem, and to his own line in that bwelem,
and she is called “sister”; i.e. in our notation y®=i.

Deacon then tells us how on two separate occasions he was given a
diagrammatic representation of the system in which his informant placed
large white stones on the ground in such positions that he was able to
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“reason about relationships in a way absolutely on a par with a good
scientific exposition in a lecture-room.” He tells us that the native’s exposi-
tion can be represented as in Figure 20.2, which is seen to be precisely
equivalent to our Figure 20.1b with straight lines for our curved lines,
equal signs for our dotted lines and with our matrilines omitted.

20N
i "

Bg Ag

Co ¢,

A

Figure 20,2 Ambrym system (Deacon’s figure).

In all three Figures, 20.1a,b; 20.2, it will be noted that the inter-
marrying persons in B and C are not in the same generation, but this
anomaly is of little consequence, since generation and actual age are not
closely correlated; e. g. in English ego’s first cousin can be as much as half
a century older than ego.

20.3 Ambrym Kkinlist. For south Ambrym Deacon gives us the follow-
ing list of Kinterms and corresponding kinstrings. to which we have added
our section designations, i, x, .

X tata F, FFF, BS, HZS

X netuk C, uSSC

i kénmasian B, WZH, FF, ¢Z, HBW

i vevenukuli  pZ, pMMM

y:  metou ZC, WBC, WF
Xy sog tevian  pEZDS, pZH
Xy sog vaven w, pFZDD, uBW

vy misyuk FZH, MB, xDH

Yy nana M, pSW

i munukuli B, #DDS
Xy sog towor H, ¢FZDS, ¢ZH, HB, sMMBS
Xy evyok $FZDD, ¢BW, ¢MMBD, HZ

(see below) niuk FZ, MBW, FZD, WM, BD, HZD, MBW
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(see below) membyug CC
(see below) vavu dFZC, MEC, WM, MF, FM, MM,
#MBC, HM, ¢DH, $FF

By tracing out these kinstrings on Figure 20. 1, we find that they are
.in agreement with the structure of the connubium except that:

i) a mother imitates her husband in calling their children netuk,
instead of metou,
i1) vavu is a catchall for grandparents and membyug for grandchildren,
iii) vayu and riuk are irregular in some cases.

In this connection Deacon tells us that his informant. . . remarked, "some
things are ‘not straight’ about the system,” pointing out that vavu occurs in
too many segments and “niuk is also not straight.” Deacon says that the
consciousness of these irregularities, besides being a great tribute to the
man’s intelligence, is an additional proof of the correctness of the system.

20.4 Vao graph and group. We have now studied alternating direct
exchange for Ambrym with three clans and for Aranda (patrilineal) and
Dieri (matrilineal) with four. The corresponding five-clan connubium, though
theoretically possible, is not known to exist (see 21.2), but the six-clan case
(matrilineal) is represented by the Vao connubium, with kingraph and
generating relations as in Figure 20. 4.

From Figure 20.4 we see that w=x%y%%, which means that a male mar-
ries his third cousin FFFZSSD, just as in the Dieri system, also matrilineal
but with four clans instead of six, ego marries his second cousin FFZSD
(19. 6).

By tracing-out the kinstrings in Table 20.4, the reader may verify how
well the kinterms fit into the marriage-structure. Note the blanket terms
natuk for child, tumbuk for grandparents, and mambik for grandchildren.

20.5 Possible evolution of systems with direct exchange. Although it
is our purpose throughout to describe the various systems rather than to
speculate on their possible evolution, let us here take a bird’s-eye view of
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hyhyhy:yhyhyh;xij

— -

+3
x="=hyhyh _ =
¥ yny —

>~ . yhyhy=yx®

y: soguk | tinak

¥i temak | tinak yX: tahuk

2 natuk (C of either parent) vk (=x¥): netun sogok (y%)
sogon tete

XAz tumbuk (all grandparents) vx*:  pelegak | vinguk

R mambik (all grandchildren) y&*: tasarvaseas

ss, (toghak | T
X7 Trehik LS
Generating relations: y*=h*=x°=i, with x=yh, h=w

Figure 20. 4 Vao connobium in terms of x, y and h.
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Table 20.4 Vao kinterms

foghak ueB, ¢eZ, FFE soguk MB, FZH, ZS, WBS
tehik ~yB, dyZ, SSS tinak M, MZ, FBW
hogotuk HZ, B tahuk WB, ZH

temak F, FB, MZH netun sogok MBS

tinak FZ, MBW sogon lete FZs

natuk C pelegak WF, DH

tumbuk PP vinguk SwW

mambik CcC

the information we have obtained about them by indicating how they may
have developed from the simple Kariera system.

The Kariera system consists (13.2) of two overt patrimoieties, each of
which is divided into so-called “hordes”, chiefly on the basis of the territory
they occupy. In the Kariera tribe itself the number of hordes in either
moiety is ten.

Then the Karadjeri and Aranda systems, each with four overt patriclans
and two latent matriclans but with different marriage rules, may have
resulted from the splitting of each of the two orginal moieties into two
parts, consisting of half of the hordes in the moiety (five each if the
original number was ten as in Kariera).

The question now arises: why should such a split take place?

Here we shall be content with the answer sometimes given that it
results from the apparently universal phenomenon of mother-in-law avoid-
ance. In a system like Kariera, with only two participating clans, i.e. the
moieties A and B, if ego is in clan A, then ego’s actual WM is also in clan
A, together with all of ego’s classificatory FZ’s, many of whom will still
be unmarried and therefore, in a patrilocal society, will still be living in
ego’s own clan. Then the fact that they are equivalent to ego’s actual
WM, i.e. that they go by the same kinterm (in Kariera the term is foa,
see 14.7) means that all the women in the first generation above ego,
who may range in age from much younger to much older than ego, must
be avoided in the same way as ego’s actual WM, though less intensely. This
awkward situation will gradually be eliminated if it happens, perhaps at
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first on the basis of geographical proximity alone, that a certain five of the
hordes in the Kariera moiety A confine their marriages to a certain five in
B, thereby producing the Karadjeri arrangement, in which ego applies the
kinterm yala to his WM and a different kinterm ibal to his FZ, so that
ego’s clan has been split in two parts, with ego and his FZ in one part
and ego’s WM in the other. In Aranda the patrimoieties are split into two
parts as in Karadjeri, although the marriage rule is different, and in Dieri
it is the matrimoieties that are so split. Note the distinct Aranda terms
wonna for FZ and marra for WM, and the distinct Dieri terms ngatamura
for WM and papa for FZ.

These new marriage arrangements, at first not consciously adopted, will
gradually, like other customs, become part of the tribal law.

As expressed by Layard [1942: 102]:

it is necessary to counteract the widespread impression that...such
regulations are in any way imposed from above by some ingenious effort
of conscious thought. Thus it is quite common to hear it said, “How could
primitive peoples invent such complicated systems?” The answer is...that
of course no one ever did invent it. It just happened, in obedience to
innate and wholly unconscious laws; and the individuals composing it, far
from ever having thought it out, are themselves caught up in it often...
very much against their wills.

If just one of the two patrimoieties is divided in this way into two
parts, while the other remains intact, we obtain the Ambrym system, and
if just one of the matrimoieties splits we obtain a system, let us call it
anti-Ambrym with Figure 20.5, that bears the same relation to Ambrym by
interchange of x and vy.

Layard points out [1942: 138] that this anti-Ambrym system (Figure
20.5) satisfies many of the requirements of the Vao kinship terminology
(Figure 20.4). For example, by tracing out we find WB~ZH, BW~HZ,
MB~FZH~ZS5~WBS, eB~FFF and yH~SSS on both figures. Layard also
produces cogent evidence from their mythology to show that until recently
the Vao natives did in fact practise anti-Ambrym marriage. But in the
anti-Ambrym system we find W~FZSD (Figure 20.5), whereas in Vao W~
FFFZSSD+FZSD (Figure 20.4). Morever, in Vao, but not in anti-Ambrym,
ego’s wife is also ego’s DD, a striking fact confirmed by the statement of
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Figure 20.5 Anti-Ambrym connubium.

a native informant on the nearby island of Pentecost that “men marry their
granddaughters”. These discrepancies between anti-Ambrym (earlier-Vao)
and the actual Vao system are explained if we assume that each of the three
matriclans in earlier-Vao (i.e. anti-Ambrym) split into two parts, so that
the intersection of these six parts with the two segments in each patriclan
produced the twelve segments found by Layard at the time of his visit to
the island of Vao.

20.6 The Kokata system. As an appendix to our discussion of systems
with alternating direct exchange, e.g. Ambrym with three clans, Aranda
with four and Vao with six, let us now briefly describe the four-clan Kokata
system, which is unique, so far as we know, in having a “rotating direct
exchange”, i.e. a system in which the four participating clans can be
arranged in a circle in such a way that for male egos in the successive
generations of a fixed clan the giver clan rotates around the circle, instead
of alternating back and forth from left to right of ego’s own clan,

Our field-information is summed up in Figure 20. 6 a, b,c.
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bagali = kabili bagali = kabili bagali = kabili bagali = kabili
B l FFZ T ™ MF MM MMB MFZ
kamaru = kundili mama = nyundu kamaru = kundili mama = nyundu
MB Fz F M umari umaru umaru
MMES FZ F M
WP FFZD FF23
Wi MBS
WMB
[
[ | I
maradu = malan malan = waia malan = waia maradu = malan
FMBSS MBD MB3 FMESD B W WB Z
MMBSD MMBSD
FMBDD
kada = un!ial um.'!ri = undal kada = un!;al umari = undal
mingaii | mingaii DH D ugari L Z5W ZDH ugari
3 HBDD zs8 MBSD MBSS ZD
SW
maradu vain bagali  kabili bagali  kabili maradu  waia
MBDDS WEBEDDD DS oo 255 25D aps 20D

Figure 20. 6a Elkin’s diagram for Kokata.

The Kinterms in each of the twelve marriage-classes, i, x, X2, w, ...
marked on the figures may be arranged in the four patricycles as in Table
20. 6.

Each of the four Kokata clans, e. g. clan A, is thus divided into three
parts, the first part A, containing generations...Gy, Gy, G.g, G_g ..., the
second A, containing...G,, G_y, G.4, G_y,...and the third A, containing...
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xn=w:=ya=i’ xs=yﬂ=(x1y)a=(y¥x)l=i
w___xiy:yﬂx:yzil

Figure 20, 6b Patricycles in Kokata (x, w).

Ao

Patricycles are AsAiA:, BB\B;, C/C.C;

Figore 20. 6¢ Matricyeles in Kokata (y, w).
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Gy, Gy, G_5, G_g,... . In this respect Kokata occupies an intermediate
position between the section tribes—Kariera, Karadjeri etc.—and the subsec-
tion Murngin tribe. Since we wish to adhere to our definition of a section
as a set of alternate generations, these parts cannot be called either sec-
tions or subsections; so we shall simply call them divisions.

Then since there are altogether twelve of these divisions, three in each
of the four clans, the Kokata group, with generators x and w, or x and vy,
or y and w, and corresponding generating relations

B=wi=l,
X¥=yd =i,
y=wi=i,

will be a non-commutative group of order twelve. In algebra it is denoted
by 2, and called the alternating group of degree four. Since w=y*X* (cf.
Figure 20.6b), marriage is with second-cousin.



CHAPTER XXI

Patrilateral Gross-cousin Marriage

21.1 Regular permutation-groups. For all tribes with sections the
marriage rules take the form of prescribing marriage with some kind of
cousin, The chief types actually found are listed in Table 21. 1.

Table 21.1 Types of prescribed marriage

Prescribed marriage Generating relations

1. With {irst cousin:

a ) bilateral; e.g. Kariera (commutative) XN=yi=wi=i

b ) matrilateral; e.g. Karadjeri (commutative) X=y'=w'=i

¢ ) patrilateral; e, g. Tatmul X=y'=w"=i
(but see Chapter 22) (21.2)

2. With first cousin once-removed; e.g. Ambrym F=wi=yi=]

3. With second cousin; e.g. Aranda X'=wi=y'=i

4. With third cousin; e.g. Vao X=wi=y'=i

In every case the number of permutations in the group is the same as
the number of sections in the connubium. In other words, since it is the
sections that are being permuted, the order of the group (5.1) is the same
as its degree (13.3). For example, the Kariera connubium has four sections
and the Kariera group consists of four permutations (13.4), the Karadjeri
consists of eight permutations (Figure 15.3), and so on. Let us look at
this situation a little more closely.

In the first place, if S; and S, are any two sections in the connubium,
the group must include a permutation taking S, into S, since otherwise
the connubium would fall into two or more unrelated parts, A permutation-

221
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group with this property is said to be tramsitive.

Since for any fixed S; there is at least one distinct permutation carrying
S, into each of the sections S, S, ..., S,.;, the order of a transitive group
is at least as great as its degree.

Secondly, every permutation in the group, except the identity, makes a
complete shift of the sections in the sense that it leaves no section S,
unchanged. Such a group is said to be complete. Consequently, the
permutation-group of any connubium is complete. For if a permutation P
left S, unchanged but took §, into S, with S,4S,, the system would not
look the same (cf. 16.4) for males in §; as for males in S,. For example,
if the permutation P were say the wife-relation, then classificatory sister
marriage (cf. 11.10) would be prescribed for males in S, but proscribed
for males in S,. In a complete group, no element S, can be carried into
the same element S, by two distinct permutations P, and P,, since PP
would then be a non-identical permutation leaving S; unchanged. So the
order of a complete permutation-group cannot be greater than its degree.

A permutation-group that is both transitive and complete is said to be
regular, so that the order of any regular group, and therefore of the
permutation-group of any connubium, is equal to its degree, as we wished
to prove. The mathematical statement that the group is regular is
synonymous with the anthropological statement that every section is related
to every other section and the system of sectional relations looks the same
for every male person in it.

21.2 Contrast between patrilateral and matrilateral marriage. Since the
other types in Table 21.1 have already been discussed, it remains to consider
Ic, i. e. patrilateral cross-cousin marriage in which ego marries a woman
who is his (real or classificatory) FZD but not his MBD. In the present
chapter we describe the radical contrast between patrilateral and matrilateral
marriage, with an interpolation in 21.3 on the formal similarity of patri-
lateral marriage with alternating direct exchange.

In matrilateral marriage, as we have seen, the participating clans can
be arranged is a circle such that males in the even sections of a clan seek
wives in the even section of the next clan clockwise, and similarly for the
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odd sections. If the tribe has exogamous moieties the number of participat-
ing clans must be even, but otherwise it may also be odd, as in the hypo-
thetical case of five clans C,, C,, C,, C,, C, in Figure 2. 2a.
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Figure 21.2a Circular indirect exchange with five clans (matrilateral ).

In this case, as we see e.g. by tracing-out on Figure 21. 2a, the generat-
ing relations are x:=wi=i, xw=wx. Since y=xw=wx, we have YE=XWX=
wxX=w but x§=w--w, so that the marriage is in fact matrilateral, i.e.
with MBD (yX) but not with FZD (xy).

In patrilateral cross-cousin marriage, on the other hand, the males in
the even sections seek wives in the even section of the next clan clockwise,
and in the odd sections they seek them in the next clan counter-clockwise,
as in Figure 21.2b, again drawn for a system of five clans.

If we redraw Figure 21.2b in terms of x and y, with y=xw, we obtain
Figure 21. 2c.

From either of these Figures 21.2b or ¢, we find the generating relations
X=wi=y?=], with y=xw.

In its social and economic effects patrilateral marriage is quite different
from matrilateral. In Chapter 16 we have seen that ZDD-marriage in
Murngin is actually an exchange of economic goods, namely wives, between
two matriclans. In the present chapter we are dealing with hypothetical
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Figure 21.2hb,c,d Patrilateral marriage with five clans.

systems, each with five patriclans, practicing matrilateral marriage in
the one case and patrilateral in the other. In the matrilateral case the
males in C, may well regard the whole transaction as a risky long-term
enterprise, since in every generation they send off their sisters to clan Ci,
i.e. to a clan which does not directly reciprocate, so that the return on
their investment depends on a long series of similar transactions around the
circle of five clans. The patrilateral case, on the other hand, is psychologi-
cally more comfortable. For in this case, when the males in one generation
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of C, send their sisters to C,, the investment is returned to their own clan
Co by the same clan C, in the next generation. In other words, the daughter
is sent back from C, to C, in payment for her mother, who was sent from
Co to C, in the preceding generation (cf. cliché ii in 22.2).

21.3 Formal comparison of patrilateral marriage and alternating direct
exchange. Since the generating relations for patrilateral marriage are
x!=y?=wn=i and for alternating direct-exchange (Ambrym, Aranda, Vao)
they are x*=w?*=y"=i, patrilateral marriage is like alternating-direct with
interchange of the roles of y (mother) and w (wife), a fact which is
geometrically evident from a comparison of Figure 21.2c (patrilateral)
with Figures 19, 2a and 20. la (direct-exchange). In other words, patrilateral
marriage represents an alternating direct-exchange of mothers.

Consider, for example, the males in sections i and yx of Figure 21. 2c.
The fathers of males in section i have married the females in section y, as
indicated by the dotted line, considered as running from x to y. So these
females, who are the FZ of males in yx, are also the mothers of males in
i. Conversely, the fathers of section yx have married the females in x, as
indicated by the dotted line, considered now as running from y to x, so
that the FZ of males in i are also the mothers of males in yx. Thus
the one section might say to the other: you have sent us your father’s
sisters to be our mothers and we have sent you ours; we have made a
direct exchange of mothers.

Geometrically these remarks are illustrated by Figure 21.3 a and b,
which are obtained from each other by interchange of dashed and dotted lines.

From the point of view of pure algebra, the two figures show that the
permutation-group for alternate direct-exchange with generating relations
X*=w!=y"=1 is the same abstract group (13.4) as the patrilateral group
with generating relations x*=y*=wa=i, merely with different names for its
elements. For a set of n participating clans, with 2n sections, this common
abstract group is denoted by D, and is called the dihedral group of order 2x.
The name “dihedral” comes from the fact that the group can be represented
by a cylinder with two bases (hedra=base), namely top and bottom as in
Figure 19.2c and d. It is not hard to prove that D; is the only non-commuta-
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YRYXYy=XyRy
—

Figure 21.3 Alternating direct exchange (a) and patrilateral cross-cousin marriage. (b)

tive group of order ten; or in anthropological language, that the only two
possibilities for a five-clan non-commutative connubium with patrilineal
sections are alternating direct-exchange and patrilateral cross-cousin marriage.
So far as we know, neither of these two five-clan possibilities is realized in
practice (cf. 22.5).

21.4 Remarks of Lévi-Strauss. Returning now to the main theme of
the chapter, namely the contrast between patrilateral and matrilateral
marriage, we note that the patrilateral type is much rarer and seems to
play only a secondary role to other types of marriage in the same tribe.
A great deal has been written to account for this situation. Let us merely
quote from Lévi-Strauss, who devotes to it the entire twenty-seventh chapter
“Cycle of Reciprocity” in his huge book The Elementary Structures of Kinship
[1949 etc.]. In a long chapter full of emotional eloquence and startling
metaphors that make it seen more like a prose poem than a scientific
argument, he writes:

A human group need only proclaim the law of marriage with the
mother’s brother’s daughter for a vast cycle of reciprocity between all
generations and lineages to be organized, as harmonious and ineluctable as
any physical or biological law, whereas marriage with the father’s sister’s

daughter forces the interruption and reversal of collaborations from genera-
tion to generation and from lineage to lineage.
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But in spite of its advantages MBD-marriage, in which clan C, gives
wives to clan C; and receives wives from some other clan C, at the end of
a perhaps lengthy cycle is exposed to all the dangers of any long-term
investment. For as Lévi-Strauss says,

there is another side to the coin. Socially and logically, marriage with
the mother’s brother’s daughter provides the most satisfactory formula.
From an individual and psychological viewpoint, however, ...it is a risky
venture. ... The system of patrilateral marriage is a safer operation pre-
cisely because its aims are less ambitious. ... Even among those societies
which have undertaken matrilateral marriage, none has been able to rid
itself completely of the disquiet engendered by the risks of the system, and
they have held fast, sometimes vaguely, sometimes categorically, to that
pledge of security which is provided by a certain coefficient of patrilaterality.

But Lévi-Strauss has an ominous warning for tribes that try to combine
the social advantages of matrilateral marriage with the comfort and reassur-
ance of patrilateral:

Ghosts are never invoked with impunity. By clinging to the phantom
of patrilateral marriage, systems of generalized exchange gain an assurance,
but they are consequently exposed to a new risk. ... What incest is to
reciprocity in general, such is the lowest form of reciprocity (patrilateral
marriage) in relation to the highest form (matrilateral marriage). For
groups which have reached the subtlest but also the most fragile form of
reciprocity, by means of marriage between sister’s son and brother’s daughter,
marriage between sister’s daughter and brother’s son represents the omni-
present danger but irresistible attraction of a ‘social incest’ more dangerous
to the group, even, than biological incest.

The force with which certain peoples who practice matrilateral marriage
have condemned patrilateral marriage cannot cause any surprise. The one
is not only the opposite and the negation of the other, but it also brings
nostalgia and regret for it.

Lévi-Strauss then concludes his entire book, except for a general section
called “Conclusions”, with a quotation from a sacred Hindu poem describing
the solemn sacrifice of one hundred and two gotra (heads of patrilineal
families) “who prefer to throw themselves into the flames rather than allow
the indescribably beautiful Vasavambika to make a marriage calculated to
save the kingdom but contrary to the sacred rule of ... marriage between
sister’s son and brother’s daughter:
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The one hundred and two gorra with Vasavambika at their head
marched proudly towards one hundred and three fire-pots, but not before
making their children promise to give their daughters in marriage to sons
of their father’s sisters even though the young men should be black-skinned,
plain, blink of one eye, senseless, of vicious habits. ...As for Vasavambika
she promised that those who violated the sacred custom of matrilateral
marriage would have dumpy daughters, with gaping mouths, disproportionate
legs, broad ears, crooked hands, red hair, sunken eyes, dilated eye-balls,
insane looks, broad noses, wide nostrils, hairy bodies, black skin, and pro-
truding teeth.

To this apocalyptic passage Lévi-Strauss adds the note: “these curses,
hurled against those who perfer sister’s daughters to brother’s daughters,
are by no means inconsequential. They express, with incomparable force,
decisive differences in structure, which are such that the choice made between
them by a society affects its destiny forever.”



CHAPTER XXII

latmul

22.1 “Explaining” the Naven. As an example of a tribe with at least
some avowed patrilateral marriage we may take the Iatmul in New Guinea,
a “fine, proud, head-hunting people who live in large villages” [Bateson,
1936: 4].

Our information about the kinterms comes from a single article and
the ensuing book [Bateson, 1932, 1936, 1958]. The title of the book is
Naven, the name of a ceremony in which the achievements, especially homi-
cide, of a sister’s child (laua, oftener a son than a daughter) are celebrated
by one of the child’s mother’s brothers (wau). Some of the details of the
ceremony seem not only bizarre and even revolting to Western eyes but
diametrically opposed to Iatmul behavior in daily life; e.g. ordinary social
intercourse preserves a rigid distinction between the sexes but in the Naven
ceremony the wau becomes transvestite. So it is the announced purpose of
the author to “explain” the naven, as far as possible, in the sense expressed
in his opening words:

if it were possible adequately to present the whole of a culture, stress-
ing every aspect exactly as it is stressed in the culture itself, no single
detail would appear bizarre or strange or arbitrary to the reader, but rather
the details would all appear natural and reasonable as they do to the natives
who have lived all their lives within the culture,

This task involves him in such abstruse topics as emotion and cognition,
history and culture, and modern theories of information, communication
and epistemology, all of which, as he engagingly argues, are indispensable
for a proper study of society. His ideas in this respect have had considera-
ble influence but his discussion of Iatmul kinship terminology has received
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little attention, having been analyzed, so far as we know, only in the article
by Korn [ed. Needham 1971: 99-132, reprinted in Korn 1973: 80-110].

22.2 The four clichés. Bateson lists four native statements about mar-
riage, which he refers to as “clichés”.

i) a woman should climb the same ladder that her father’s father’s
sister climbed.

Here he explains that climbing the ladder refers literally to entering a
dwelling-house raised on poles and thus metaphorically to marriage into the
same (patrilineal) clan; i.e. a woman should marry into the same clan as
her FFZ. As a corollary Bateson states the same rule from the male point
of view: “a man’s possible wives are the women of his father’s mother’s
clan; i.e. a man should marry into the same clan as his FF.” In other
words, if you are a man, do as your FF did, and if you are a woman, do
as your FFZ did.

Such an emphasis on ego's marrying into his FF’s clan tacitly implies
that ego does not marry into his own father’s clan; in other words, the
Iatmul do not practice MBD-marriage.

The second, third and fourth clichés are:

ii) the daughter goes as payment for the mother.
This cliché expresses FZD-marriage (cf. 21.1).
iii) women should be exchanged.

Bateson tells us that this third cliché is often stated by the natives
with special reference to sister-exchange,

iv) laua’s son will marry wau’s daughter.

Cliché iv) states that ego’s wife's father is wau (=MB) to ego’s father.
So ego is linked to ego’s wife by the chain FMBD. But ego’s FMBD is in
the same patrilineal clan as ego’s FM, so that ego and ego’s FF have married
into the same clan. Thus a marriage that obeys cliché iv) necessarily obeys
cliché i). Any marriage obeying the first cliché is called an iai-marriage,
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since the native word iai means “FM or FMBD or any women e. g. FMBSD
in the same patrilineal clan as these” [Bateson 1958: 308].

22.3 The two sections in Iatmul. As might be expected from the fact
that a male should act like his FF and a female like her FFZ (cliché i),
an latmul clan is divided into sections, which the tribesmen themselves call
mbapma. The word literally means “line” (cf. the “lines” in Ambrym
20.2), i.e. a line of men standing side by side, with spaces between them,
filled in by members of the other mbapma standing just behind, a motif
found elsewhere in Iatmul, e.g. in the initiatory rites. Bateson tells us
[1958: 244]:

a man's own generation, his paternal grandfather's generation, his patri-
lineal grandson’s generation are grouped together as one mbapma, and in
contrast to this his father’s and son’s generations are the opposite mbapma.
... A man may address his father’s father either as nggwail (grandfather)
or as nyamul (elder brother). This identification of relatives with others in
analogous positions two generations away on a patrilineal line rung through

the whole kinship system so that a man’s son’s wife is nyame (mother) and
his son’s wife’s brother is wau (mother'’s brother).

22.4 Kinlist. The remarkable extent to which the section-system has
influenced the whole kinship terminology is shown in the following kinlist,
where the few counterexamples arise chiefly from the fact that iai occurs
in odd generations as well as even. In the (x, y)-notation this principle of
alternation is expressed by the rule x*=i (implying also X=i, x==% etc.).
In Table 22.4 each kinterm is followed (in parentheses) by its focal string
in (x, y)-form, and each non-focal string is also written in (x, y)-form
(again in parentheses) to show its equivalence with the focal string under
igi-marriage, i.e. under the rule x2=i.

22.5 Impossibility of setting up a connubium for Iatmul. Having seen
that the Iatmul have marriage clichés which look at least vaguely like the
various sets of marriage-rules for sectioned tribes, and having discovered the
presence of sections in Iatmul, we might now feel optimistic about setting
up some sort of latmul connubium, as was done for the sectioned tribes in
earlier chapters.
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Table 22.4 Iatmul kinlist indicating i/ai-marriage

nggwail (i):
nyamun (i):
fai (xy):

tagwa (xy):
mbuambo (yx):
mbuambo (yy):
nyanggai (i):
tawontu (Xy):
nyai | fau (x):
nyame (y):
nyame (yX):
wau (y):
nondu (xgx):
mbora (yXy):
naisagut (XyX):

laua (9):
tshuambo (i):
lando (§x):
nian:

kanggat (X):
na (x9):
ianan (§X):

FF (xx), FFZ (xx), uSS (%%), #SD (%X), ¢B
FF (xx), eB, ¢B, ¢eZ

FM, FMBSD (xyXx), all of the women of the same c¢lan as
these

FM, W (iy)

MF, MBS (y%), MBD (y%), MBSSS (yX&X)

MM, MBSW (yixy)

&Z, FFZ (xx), #SD (%X)

FMB, WB (&y)

F, FB | FZ

M, MZ, MBSD (yX&), uSW (XRy)

MBD, MBSSD (y%X%), any woman’s of ego's mother’s clan

MB, MMZS, MBSS (yXx), uSWB (%xy)

FZH, DH (%9x), reciprocal of naisagut

MBW, MBSSW (yxxXy), uSWBW (RRyRy)

FMBS, WF (Xyx), WBC (XyX), mother of any woman who
is iai to cgo

#ZC, ZHF (9xx)

£yB, ¢yZ, nSS (%)

ZH, ZHDB

c

$BC, reciprocal of iau

FZC, DC (X9)

¢SS, ZSS, reciprocal of iai

The first question will naturally be: how many participating clans will
such an Jatmul connubium contain?
“obviously five”, for the following reason.

Bateson estimates (p. 402) that "in the Iatmul culture area there are

The answer would appear to be

in all between fifty and a hundred clans continually undergoing binary
fission and fusion” {cf. the remarks on Kuma in 2.15). The clan of ego’s
MB and M is called waw nyanie nampa (i. ¢. MB’s and M’s people), ego’s ZC’s
clan is laua nianggu (ZC's people; nampa=people and nianggu=children are
used synonymously), the clan containing ego’s potential wives is iai nampa,

ego’s DH’s clan is kaishe nampa (kaishe refers to cermonial exchange of
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shell currency), and finally ego’s own clan is nggwail warangka (patrilineal
ancestors, nggwail=FF, warangka=FFF). So we have the five clans:

clan of ego himself s
clan of ego’s W and FM: Ry and xy
clan of ego’s MBand M : vy
clan of ego’s DH ; Eox
ego’s ZC R

However, when we try to fit the Iatmul system into any possible con-
nubium of five clans, we meet with complete failure. There are only two
possibilities (21.3) for a five-clan non-commutative connubium, namely the
alternating direct exchange of Figure 21.3a, and the patrilateral system of
Figure 21.3b, neither of which will fit in Iatmul system. For in alternating
direct exchange the DH-clan (%yx) is identical with the MB-clan (¥),
since X=x and yx=h=w=w so that Xyx=xw=y (or we may trace-out
Xyx=y on Figure 21.3a) and in the patrilateral system (Figure 21. 3b) the
ZC clan (y) is identical with the MB-clan (y), since y*=i, so that y=¥%
Consequently, the Iatmul system, which distinguishes the three clans MB,
DH and ZC, cannot be either of the two sole possibilities. We have
reached an impasse.

The trouble lies in the fact that we have been too much influenced by
recollections of the situation in Australia. The latmul have say one hundred
clans (22.5), just as the Murngin have sixty (16.1), but in the Murngin
case, the sixty clans are grouped into sets of four, six, etc., forming con-
nubia, whereas there is no indication of any such grouping among the
Tatmul. In Murngin a clan is a certain fixed set of persons with a specific
name; Red Cloud, Snake etc. (16.1). 1If p, and p, are two males in the
same clan in a connubium, and K is any kinchain, say XY=W, then any
wife of p, is necessarily in the same clan as any wife of py. In other
words, we may speak of the wife-relationship between entire clans. But
the Iatmul situation is different. The name say waw nyame (ego’s MB's
clan) does not refer to any fixed set of persons but varies from one ego
to another, and there is no definite relationship among clans as a whole.
If py and p, are two persons in the same clan C,, and po’s wife is in clan
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C,, then p,’s wife may be in C;, or may be almost anywhere else among the
hundred Iatmul clans. There is nothing in the nomenclature to suggest the
existence of fixed clans forming a connubium.

Bateson writes [Naven pp. 248-249]:

A point which will almost certainly repay investigation may be seen in
the resemblance between the Iatmul kinship system and the class systems
of Australia, Ambrym etc. In all these systems...we find an emphasis
upon the alternation of generations. One conspicuous difference, however,
between the Australian systems and that of the latmul is that the former
are closed. An Australian community is divided into a fixed number of
groups, and it is laid down which group shall marry which group and
which generation shall marry which generation. This is not so in the
Tatmul system, and even if the Iatmul confined themselves more rigidly to
iai marriage they would not have a closed system like those of Australia.

22.6 Shortcomings of a proposed connubium. In contrast to Bateson’s
view, and to our conclusion that there cannot exist a non-commutative
connubium of five clans other than alternating-exchange or patrilateral
marriage, Korn has suggested that such a connubium can be set up with
FMBSD-marriage. The figure by which she illustrates her system [Korn,
1973: 97] can be redrawn as our Figure 22.6. As can be seen from that
figure and its legend, her system fits completely into the set of five distinct
lines listed by Bateson.

She writes (p. 96):

Marriage with the iai specified by FMBSD ..., if consistently observed,
would lead, contrary to what Bateson thinks in this respect [1936: 249], to
...an asymmetric system by five patrilineal descent lines. The closed system
implicit in the Iatmul terminology can be represented as in the figure.
There are five lines: A, B, C, D, and E, related in such a way that A
takes wives from B and C, B from C and D, C from D and E, D from E
and A, and E from A and B, in alternate genealogical levels.

But Korn’s suggestion violates the principle that a kinship system should
look the same from the point of view of every male ego in it (cf. 16.4).
For example, it prescribes ZDD-marriage for males in the odd generations
but proscribes the same type of marriage for males in the even generations,
as can be seen by tracing-out on Figure 22.7. For if we start from an
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Figure 22.6 Iatmul system as proposed by Korn.

odd-generation section, say A4,, and trace-out ZDD, taking into account that
Y=XW and therefore ZD~Y=WZX, the path for ZDD~YYV—=WRWX
takes us through sections D,, D,, C, to C,, which is the wife-section for A,
But for the even generations, say for section A, the ZDD-path brings us
to Cy, where the wife-section for A4, is B,. 1In fact, the whole system looks
quite different for the even and the odd generations. For a male in an
even section, say A,, his MF is in the same section as his WBW (in each
case Cy) but in in an odd section, say A,, his MF is in B, and his WBW
in E,. Mathematically expressed, section A, is carried into the same section,
namely C,, by the two permutations xwx (MF) and w*(WBW), which are
distinct from each other because xwx carries 4, into B, and w? carries Ay
into E,, in contravention of the definition of a complete group in 21.1.
Theoretically, of course, there might exist a marriage-alliance in which the
marriage-rules would change from generation to generation, but such a
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system would be quite different from any that have been discovered or
suggested up to now.

22.7 Randomness of latmul marriage. When we ask ourselves what
kind of marriage is in fact prescribed by Cliché i) we find that this cliché
is not a marriage-rule at all, at least not in the sense of prescribing mar-
riage with any particular kind of relative, but is simply an adjuration to
conservatism: do what your grandfather did, whatever it was. In symbols
this rule reads: x*=i, a rule which cannot alone describe a type of mar-
riage. Since marriage involves both men and women any description of it
must involve both x and y; thus

Xy=¥x=xy=yx (Kariera),
w=yyX§¥ (Aranda) etc.

In fact no type of prescribed marriage is regularly practiced by the
Iatmul. Bateson tells us that the natives take a pride in the marriage rules
and look down on their neighbors as “dogs and pigs” who mate at random,
but then he says (p. 91):

this gibe is singularly inappropriate in the mouths of the Iatmul, since
not only have they three positive marriage rules which conflict one with
another, ... but the people do not adhere even to their negative rules,
These negative rules are very vague, but there is a strong feeling against
marrying own sister. ... Classificatory “sisters”, women of own clan with
whom genealogical connections can easily be traced, are sometimes taken as
wives according to an oft-quoted cliché: “she is a fine woman so they
married her inside the clan lest some other clan take her.”

In general, however, it is considered desirable to go outside of one’s
own clan, either for marriage or for head-hunting. At least one Iatmul
tribesman has earned his head-hunter’s insignia by decapitating one of his
wives, a person suitable for the purpose because she came from another
village.

Again, although there was a very strong feeling against marriage with
mother-in-law, one tribesman married his own mother-in-law while his wife
was still alive and still married to him, and “it was nobody’s business to
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say him nay in this individualistic culture”, since he was a “great sorcerer
and at the same time a great eater and fighter.”

Lastly, “there are many marriages with outside groups—with women
captured in war, or sent as peace offerings, women met on trading expedi-
tions etc.” So Bateson sums up the marriage system by saying that in
practice marriage occurs very nearly at random.

The near-randomness of Iatmul marriage means that a male ego may
marry into practically any other clan, just as in any tribe with non-prescribed
marriage. But the continued existence of recognized sections (mbapma;
22.3) strongly suggests that the Iatmul originally had some kind of pres-
cribed marriage, at which time the five names for clans, wau nyame nampa
ctc. (22.5) or other names from which these have developed, would refer
to relationships among entire clans as in the Australian systems, instead
of referring merely to the relatives of an individual ego. But whatever it
may have been originally, the system has now become non-prescriptive,
with vestigial remains of patrilateral marriage expressed in Cliché iii.

The principle of alternation of generations so clearly evident in the
kinterms (22.4) and in the sections (mbapma) can only have arisen in the
earlier prescriptive stage. If that earlier stage was patrilateral marriage, in
which one clan gives to another and receives from it in alternate generations
(21.2) the present confused state of marriage in latmul may perhaps be
considered as support for the contention of Lévi-Strauss (21.4) that patri-
lateral marriage provides no integration or solidarity in the community and
is naturally disruptive.

Bateson tells us [1936: 92]:

when we consider that the villages are very large, with a population
ranging from two hundred to a thousand. it seems unlikely that an im-
portant affinal link will be perpetuated by analogous marriages in future
generations.  If therefore thoss old affinal links are necessary for the inte-
gration of the community, some means must be found of diagrammatically
stressing them, a function performed by naven.

Unfortunately we have no space here to describe how this ceremony, so
bizarre in Western eyes, contributes to such a result.
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CHAPTER XXIII

Conjunctiveness in Sibling Terminologies

23.1 The basic question. The preceding chapters have dealt with the
central task of formulating concise and useful descriptions for kinship
terminologies as a whole. The scope of the present chapter is narrower in
one respect and much wider in another. It is concerned almost entirely
with sibling terminologies but attempts to answer the following question of
wide-ranging significance,

The number (23.11) of theoretically possible sibling terminologies is
4,140, of which about fifty are actually found. So it is natural to ask: on
what principle have these fifty-odd been chosen, there being no implication,
of course, that any tribe in the history of mankind has consciously adopted
a sibling terminology after comparing its advantages with those of the other
4,139 possibilities. We shall find that with negligible exceptions the actually
occurring systems satisfy the (very restrictive) condition of being “conjunc-
tive” in the sense of 23.2. So our question becomes: why is it natural for
a tribe to choose a conjunctive terminology? Since terminologies develop
without conscious planning it is to be expected that the explanation will
lie rather deep in human psychology.

23.2 Definition of conjunctiveness. The words “conjunctive” and its
antonym “disjunctive” are closely related in meaning to the words “and”
and “or”, and therefore to the concepts of “union” and “intersection”,
defined as follows. Let S, S, ..., S,., be any set of subsets of a given
underlying set U of elements of any kind. Then the set of elements that
occur in S, and in S, and in S, ... and in S,., is called the intersection of
the subsets S), S;, ..., S,-;, and the set of elements that occur in S, or in
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S orin S, ..., or in S,_, is called their union, where “or” is used in the
sense of “and/or”, so that the union is the set of elements occurring in at
least one of the subsets. Thus a partition of U can be defined as a set of
subsets of U such that their union is the whole of U/ and the intersection
of any two of them is empty.

Now let Py, Py, ..., P,_; be any set of partitions of U. By a conjune-
tive subset of U we then mean either the entire set U or else a non-empty
subset S of U which is the intersection of some of the classes in the
partitions Py, P, ..., P,.,. In particular, each of the classes in any of
these partitions is itself a conjunctive subset of U, since every set is the
intersection of itself with itself. Then a partition P of U such that every
class in P is a conjunctive subset of U is called a conjunctive partition of
U. Thus conjunctiveness is defined only with respect to a given set U and
a given set of partitions Py, P, ..., P,., of U.

23.3 [Partitions by material, manageability, shape and size. To give an
illustration that will later provide an exact analog for sibling terminologies,
let U be a heap of balls differing in material, shape and size; namely, with
two materials “gold” and “aluminum”, two shapes “round” (i.e. spherical)
and “ellipsoidal”, and two sizes “big” and “small”. Let the set of gold
balls be denoted by g, and similarly for the letters @, r, e, b and 5. Let
the set of those balls that are gold and round be denoted by gr, so that the
set gr is the intersection of the two sets g and r, and similarly for the other
combinations ge, ..., es of two letters; and finally let the set of balls that
are gold and round and big be denoted by grb, and similarly for the other
combinations grs, ..., aes, of three letters.

Now let P, P, P, be the three partitions by material, shape and size
respectively; i.e. Po=(g, @), Pi=(r, ¢), P,=(b, s). Then any non-empty
set of balls that can be represented by one letter, say g, or by two letters,
say gr, or by three letters, say grb, is conjunctive with respect to the set
of partitions (P, P;, P;) and all other sets of balls except U itself are
disjunctive. For example, the set, call it g--r, consisting of all balls that
are gold or round (or both) is disjunctive.

A given set of balls may be conjunctive with respect to one set of
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partitions and disjunctive with respect to another. For example, let us
suppose that very heavy balls, i.e. those that are gold and big, and also
very light balls, i.e. those that are aluminum and small, are inconvenient
to handle, while the balls of medium weight, i.e. gs-+ab, are convenient,
and let P’=(c, i) denote the partition by manageability into “convenient”
and “inconvenient”, Then the set g=ib+cs of gold balls is conjunctive
with respect to (P, P, P,) but disjunctive with respect to (Pl P, P,). For
the moment let us confine our attention to (P, P,, P;).

Altogether there are 1+46-+12+8=27 conjunctive subsets of U namely:

In geometric language

Conjunctive subset (see just below)

i) U itself: one cube

iy goa r, e b s: six faces
iil) gr, ge, gb, gs, ar, ae, ab, as, rb, rs eb, es: twelve edges
iv) grb, grs, geb, ges, arb, ars, aeb, aes: eight vertices

These twenty-seven conjunctive subsets can be represented geometrically
as in Figure 23.3, in which a one-letter set of balls is represented by a
face of the cube, e, g. the set g of gold balls by the left face, a two-letter
set, say gr, by the upper left edge, which is the intersection of two faces g
and r, and a three-letter set, say grb, by a vertex, the intersection of three
faces. Consequently, any partition P of the eight vertices is conjunctive
(with respect to P, P,, P,) if each of the classes of P is either a face, an
edge or a vertex; e.g. the partition (g, ar, aeb, aes) made up of one face,
one edge and two vertices is conjunctive. But any other partition except
U itself, is disjunctive; e.g. the partition (g-+ar, aeb, aes) is disjunctive
because the class g+ar is not just a face, or just an edge, or just a vertex.

23.4 Product and factorization of partitions, A partition P that is
conjunctive with respect to a given set of partitions (P, Py, ..., P,_;) is
called a conjunctive product of P, P, ..., P,_,; and conversely, if P is
given, then any set of partitions with respect to which P is conjunctive is
called a (conjunctive) factorization of P. Any partition P admits many such
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Figure 23.3 Conjunctive sets on a cube.

factorizations, and conversely any set of partitions has many such products.
For example, let U be a pile of fruit in a bowl containing plums,
apples and pears, and let us suppose that the plums are red, round and soft,
the apples are yellow, round and hard, and the pears are yellow, ovaloid
and soft. Let P be the three-class partition of U by type of fruit, and let
P, be the two-class partition by color, P, by shape and P, by firmness.
Then since each type of fruit is uniquely characterized by two of these
three properties, the partition P can be conjunctively factorized in the three
different ways (P, P,), (P, P;) or (P, P,), e.g. in the factorization (P,
P,) the class of plums in P is the intersection of the class of red objects
in P, with the class of round objects in P,. Similarly, the partition P of
the above set of balls into the eight classes grb, grs, geb, ges, arb, ars, aeb,
aes, with each type of ball in a class by itself, is conjunctive with respect
to the factorization (P, P,, P,) by material, shape and size and also with
respect to the factorization (P, P,. P,) by manageability, shape and size.
So we might ask whether one of these factorizations is somehow more
“natural” than the other. In the present case it is probable that most
persons, on looking at the balls, would say that the partition by material
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is more natural than the partition by manageability, but some persons, on
handling them, might give the opposite answer. Although these distinctions
have been introduced here merely for the sake of their analogy with sibling
terminologies (23.10), let us continue for the time being to talk about the
balls, since they provide a more tangible setting for psychological experi-
ments.

23.5 Nomenclature from fields other than mathematics. Up to now our
nomenclature has been chiefly mathematical. But the psychologists and
others have their own technical terms. Our “underlying set” becomes the
universe of discourse and any subset of U is a concept. Thus the set of
round balls is the concept of “roundness”, the set of rb balls is the concept
of “round bigness” or “big roundness” and so forth. Any partition of U
is a categorization, or dimension, or attribute, or property, or component of
the elements of U, and a class in a partition is a category. Thus our Py
is the “shape attribute”, our P, is the “size attribute” etc. Any class in an
attribute, i. e. any category in a partition, is a value of that attribute. The
attribute values are assumed to be clear-cut; e.g. the big balls are notice-
ably bigger than the small ones. Finally, in the language of some linguists
and anthropologists, a factorization of a partition is called a componential
analysis.

23.6 Componential analysis in anthropology. Let us here interpolate
an example of componential analysis in anthropology. Let U be the set of
all pairs of persons (a, b) in a Tamil-speaking tribe and let P be the parti-
tion of U into twenty-one classes in which two pairs (@, 4) and (c, d) are
in the same class if @ applies to b the same kinterm as ¢ applies to d, the
kinterms being chosen from the nineteen terms in Table 10.1 together with
the two special affinal terms kanavan=‘“husband” and mainaivi="wife”, so
that the kinterms may be regarded as labels for the classes in the Partition
! o

Now consider the folllowing set of seven partitions of U,

Py: is the five-class “generation” partition Gy, Gy, Gy, G.j, G_¢y4y, Where
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G;, includes the pairs (a, b) such that the shortest chain linking a to
b, call it C(a, b), is of height at least two, G, includes the pairs such
that C(a, b) is of height one and so on;

P;: is the two-class “even-odd” partition (E, O) with (a, b) in E if C(a, b)
is even (see Table 10.1) and in O if C(a, b) is odd;

P,: is the two-class “sex-of-referent” partition (s, ¢) with (a, b) in p if b
is male and in ¢ if & is female;

Py: is the two-class “sex-of-speaker” partition (m, f) with (@, b) in m if a
is male and in £ if a is female;

P,: is the two-class “even-odd-sex-of-speaker” partition (f, ¢), where the
class p includes all pairs (a, b) with C(a, b) even and a male and also
all pairs with C(a, b) odd and a female, and ¢ includes the other pairs.

P;: is the two-class “relative age” partition (e, y) with (a, b) in e if b is
older than @ and in y if 4 is younger than a.

Ps: is the two-class “special-affinal-kinterm” partition (s, n), where (a, &)
is in 5 if b is spouse to a and is otherwise in n (non-spouse).

Then the set of partitions (P, Py, ..., Py) is a componential analysis
of P, since the class in P labeled paddan is the intersection of the two classes
G,, in P, and g in P,, and similarly for the other classes, as follows:
paddan (G,,, p), paddi (G,,, ¢), takkappan (G, E, p), attai (G,, E, ¢),
maman (G, O, p), tay (G, O, ¢), annan (G, E, p, €), tamakay (G,, E, ¢, e),
tambi (G,, E p, y), tangay (G, E, ¢, y), maittunan (Gy,O0, pu, m),
maittuni (Go, O, ¢, m, n), machchan (G,, O, f, n), makan (G_;, p, ),
makal (G.,, ¢, B), marumakan (G., pt, 7), marumakal (G.,, ¢, 7),
peran (G_iosys ), pertti (G_couys @), kanavan (s, p), mainaivi (s, ¢).

23.7 The meaning of meaning. Continuing our excursus on com-
ponential analysis, let us now point out that the topic is of interest in
general linguistics and philosophy because it attempts to define the “meaning”
of each of the kinterms. The meaning of the word say paddan is regarded
as being the answer to the question: what must we kpow about the pair
of persons (a, b) in order to know that a applies the term paddan to 5?
Certainly it is sufficient to know that ¢ and & are kinsmen, i.e. members
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of the same Tamil-speaking tribe, that & is at least two generations above
a, and that b is male. So it is possible to take the view that the meaning
of paddan lies precisely in these conditions.

More generally, let U be a set of elements of any kind, let P be any
partition of U and let each of the classes of P be marked with a distinctive
label whose meaning we seek to define in terms of a given componential
analysis (P, Py, ..., P,_y) of P. For definiteness we shall continue to
examine the particular case discussed just above, in which U is the set of
pairs (a, b) of persons in a Tamil-speaking tribe, P is the partition of U
generated by the Tamil kinship terminology, P, P, ..., P, are the seven
partitions by generation, by even or odd chains etc., and the labels are the
Tamil kinterms.

Now let an element in any of the classes of P be called a denotatum
of the label of its class, e.g. in our Tamil case any pair of persons (a, b)
such that @ applies the kinterm paddan to b is a denotatum of the word
paddan, and let the entire set of denotata of a label be called its designatum,
so that the designatum of the word paddan is the entire set of pairs of
persons (a, b) such that @ applies the kinterm paddan to b. Since this
designatum is a class in the partition Q and since Q is conjunctive with
respect to (P, Py, ..., Fg), the designatum must be the intersection of certain
classes in these partitions. Then the set of these certain intersecting clgsses
is called the significatum of the word paddan. See Morris 1938.

In this way the significatum, or signification, or meaning, of a word may
be regarded as a set of necessary and sufficient conditions for an element
of U to be a denotatum of the given word. For example, a set of necessary
and sufficient conditions for a pair of persone to be a denotatum of paddan
is

i) membership in the class G,, and
ii) membership in the class p.

23.8 The present state of componential analysis. But since every parti-
tion P can be componentially analyzed in many different ways, which one
of them are we to choose in determining the meaning of a given word?
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Suppose, for example, that the Tamil-speaking tribe in question contains no
pair of persons (a, b) such that b is older than a but in a lower generation.
Then the five-class partition P, can just as well be replaced by a three-class
partition, call it P, with the three classes r,, r,, r, where (a, b) is in ry if
a and b are in the same generation, in r, if they are one generation apart,
and otherwise in r,. The paddan class is now the intersection of r,,, s and
e, with the result that, although its designatum remains unchanged, its
significatum is no longer the set of two classes G,, and ¢ but rather the
set of three classes ry,, g and e.

In this way the word paddan may have different meanings for different
observers of the given tribe, whether they are native children observing
from within or anthropologists from without, just as for most speakers of
English the word nephew will mean “brother’s or sister’s son”, while for
others, e. g. for those anthropologists who practice componential analysis,
it may mean “one generation descending, collineal, male”. Since each
possible significatum of the word paddan corresponds to a certain com-
ponential analysis, we might consider the possibility of defining the meaning
of paddan to be the set of all its significata, arising from all possible
compontial analyses; or better perhaps from a set of preferred analyses,
since it appears that some progress is being made toward fairly satisfactory
criteria for preferring certain analyses to others.

Efforts of this kind to define the meaning of meaning have been moti-
vated in part, both for general linguists and for anthropologists interested
in kinship terminology, by the success of the phoneme, introduced into
linguistics in the late nineteen-twenties. As we learn from any contemporary
textbook, the definition of a phoneme as a certain equivalence class of sounds
has produced considerable progress in theoretical linguistics and very great
progress in the practical task of transcribing hitherto unwritten languages.
Analogously, efforts are now being made, along the lines suggested above
for the kinterm paddan, to define a “meaning” as a certain equivalence class
of significata. Up to now, this componential analysis has been practiced
chiefly by anthropologists, and chiefly for certain small classes of words
with comparatively clear-cut meanings, e. g. kinterms or the names for plants
or colors in aboriginal languages, the hope being that success in these
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simpler fields will lead to wider success comparable to the success of the
phoneme. It is true that some anthropologists have scoffed at componential
analysis e. g. by ironically asking: which is more natural, or as they some-
times say, which has greater “cognitive validity”: to think of one’s aunt as
one’s parent’s sister or as “one-generation ascending, collineal, female”?
Such gibes need not be taken seriously. It is true that in kinship terminology
definition by product of relations, e. g. aunt as product of parent and sister,
seems more natural than definition by componential analysis. But the aims
and hopes of the componential analyst embrace much wider fields than just
kinship terminology, c.g. the meaning of technical terms in physics or
botany, or even in literature, music or art, where product-relations are not
so readily available. However, it is still too early to say whether such
success is attainable, and if it is, whether any significant role will be played
in its attainment by the study of kinship terminology.

23.9 [Experiments on conjunctiveness. After this general excursus on
componential analysis, i. e. conjunctive factorization, let us now return to
our particular subject, namely conjunctiveness in sibling terminology.

The psychological interest of conjunctiveness is shown by experiments
of the following kind, which demonstrate that conjunctive concepts are easier
to “learn” than disjunctive ones. The experimenter shows to the subject an
indiscriminate heap of balls described in 23.3 with no comment on their
properties. After choosing in his own mind some concept C,, say Cy=rb,
he asks the subject to draw a ball from the heap and then tells him, by
saying “yes” or “no”¢ whether the chosen ball belongs to C,. The subject
then chooses a second ball, and a third etc., endeavoring after each trial
to give a correct description of C,. As soon as his description is correct,
i.e, as soon as he has “learned” the concept, the experiment is repeated
with another concept, say C,=gr+as. Experiments with a large number
of subjects have demonstrated that a concept will be learned much more
quickly if it is conjunctive with respect to some set of clear-cut attributes
of the balls. When trying to learn a concept like C,=rb, the subject will
soon begin to be affected, consciously or subconsciously, by the invariable
presence of round big balls among the “yes” answers. But for the concept
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Cy=gr+as, which is disjunctive with respect to any set of noticeable attri-
butes, the task is much harder, because the subject cannot find attribute-
values whose presence is necessary and sufficient for success.

Finally, if a given subject is affected not so much by material as by
manageability, a sufficient number of experiments will reveal his idiosyncrasy,
even though it may be subconscious, because of the greater quickness with
which he learns concepts that are conjunctive with respect to the set of
partitions (P}, P,, P.). We here assume that the distinction in material is
much more clear-cut than the distinction in manageability, so that almost
all subjects will prefer (P, P, P;) to (P, P, Ps).

23.10 Analogy with sibling terminologies. We are now ready to apply
the analogy of the balls to sibling terminologies. The four attributes of
material, manageability, shape, and size correspond respectively to relative
sex, sex of speaker, relative age, and sex of referent, so that we now have
the four partitions

Po=(7; 2), Pi=(m, f), Pi=(e y), Po=(p, 4)

instead of the earlier Po=(g, a) Pi=(c, i), P,=(r, €), Py=(b, 5), and the
cube in Figure 23. 3 must be relabeled as in Figure 23. 10.
The heap of balls now corresponds to sibling pairs of the eight types

wep=mey,  rwep=fep,  myu=myp,  TYp=[yph,
xer=feyt, rep=mep,  yyp=fyp, Ay Pp=myg,

and a concept is a subset of these eight types; e.g. in English the brother
concept is the subset (wep, z=yp, xep, xyp), and every child has the task of
learning the sibling-Kinterms associated with various concepts on being told
in each case whether or not he is correct in assigning a certain kinterm
from his native language to a certain pair of persons. A complete sibling
terminology is a partition of the set of the eight sibling types, each class
in the partition being associated with a native kinterm. For example, the
English terminology brother | sister is a partition of the eight types into two
classes, each containing four sibling types.
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Figure 23.10 Conjunctive sibling kinterms on a cube,

On the perhaps reasonable assumption that a sibling terminology is more
likely to survive if it is easier to learn, we may expect that almost all the
fifty-odd actual sibling systems are conjunctive with respect to P,P,P, or
PyP\ Py or both, and that the few disjunctive systems will be represented by
very few tribes. This argument that sibling terminologies are influenced by
conjunctiveness will be more cogent in proportion as the total number of
possible terminologies, i.e. the number of possible partitions of eight things,
is large and the number of conjunctive partitions is small. So we must
now calculate these numbers, beginning with the total set of partitions, for
which we have already stated in 23.1 that the answer is 4,140,

23.11 The 4,140 possible sibling terminologies. To begin with, we
have the one-class partition in which all eight elements are thrown into one
class, as in the Mbuti terminology (6.5) with the same kinterm namami for
all eight sibling types. At the other extreme is the eight-class partition in
which each of the eight elements is in a class by itself, as in the Ogalalla
terminology with a separate kinterm for each of the eight sibling-types.
All other partitions will consist of two to seven classes such that the sum
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of the numbers of elements in all the classes is equal to eight. So we have
the twenty-two possibilities listed in Table 23.11. In parentheses we give
the number of partitions in each case, as calculated just below.

Table 23.11 The 4,140 possible sibling terminologies

Nug}-ber . Number of elements in each class

Slassas (with the number of corresponding partitions in parentheses)
one: 8(1)

two: 7,1(8); 6,2(28); 5,3(56); 4,4(35)

three: 6,1,1(28); 5,2,1(168); 4,3,1(280); 4,2,2(210); 3,3,2(280)
four: 5,1,1,1(56); 4,2,,1,1(420); 3,3,1,1(280); 3,2,2,1(840); 2,2,2,2(105)
five: 4,1,1,1,1(70); 3,2,1,1,1(560); 2,2,2,1,1(420)

six: 29,1.10,0 1086): 12,201 1, 1(210)

seven: 21,1001 1(28)

eight: y % A% [ (s % B s i )

In Figure 6.5c we have given one example for each of the numbers of
distinct kinterms, from one to eight.

We now calculate the number of distinct partitions in each of the cases
listed in Table 23.11.

In the (5,2, 1)-case, for example, we may first make any selection of
five elements out of the eight to be put in the largest class, then any
selection of two from the remaining three to be put into the next largest
class, whereupon the last element necessarily goes into the smallest class.
So we must find some convenient way of calculating the number of different
ways of selecting five elements from eight, then two from three etc.; or
more generally, of selecting r elements from a set of n elements, This
number is denoted by its symbol ,C, and is called the “number of combina-
tions, i.e. selections, of » things taken » at a time”.

In 13.3 we saw that the number of ways in which n elements can be
arranged in a row is given by n!=n(n—=1)(n—=2)...3.2.1. But for any
chosen value of » a given arrangement of the n elements may be regarded
as being a selection of its first r elements. So without changing the selection
we may rearrange the first » objects in »! ways and for each of these r!
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rearrangements we may then rearrange the last (n—r) elements in (n—r)!
ways. Thus every selection corresponds to r!(rn—r)! arrangements, which
means that the number n! of arrangements is r!(n—r)! times as great as
the number ,C, of selections. Thus ,C,=n!/(r!(n—r)!).

In the two-class (7,1)-case the larger class can be formed in the ,C,
ways in which seven elements can be chosen from the eight, whereupon the
remaining element necessarily goes into the other class. Thus the total
number, call it N(7,1) of possible partitions in this (7, 1)-case is given by
N(7,1)=4C,=8!/(7! 11)=8. Similarly, in the (6, 2)-case we first select the
six elements for the larger class in 4C; ways, whereupon the two remaining
elements necessarily go into the other class, so that N(6,2)=8!/(6! 2!)=28.
And similarly N(5,3)=8!/(5! 3!)=56. In the (5,2, 1)-case we first select
the five elements in zC; ways and then the two elements in ,C, ways, giving
N(5,2,1)=5Cs¢,C; =81 /(5! 31) 3! (2! 1!)=8! /(5! 2! 1!)=168, and simi-
larly N(4,3,1)=8!/(4!3!1!)=280. In each case the factor 1!=1 may, if
we wish, be left unwritten; e.g. N(4,3,1)=8!/(4! 3!).

In all these cases we can at once write down the answer in the form
8!'/(p! q!...r!) withp+q+ ... -+r=8, where p=>g>>... >r are the numbers
of elements in the largest, next largest, ..., smallest class. But when two
of the classes are of the same size, as e.g. in the English (4, 4)-case, the
8! /(4! 4!) partitions will be equal in pairs, since the partition obtained by
choosing one set of four for the first class and putting the second four into
a second class is the same as the one obtained by choosing the two sets of
four in the opposite order. Similarly, the (3,2, 1, 1, 1)-partitions with three
classes of equal size are equal to one another in sets of 3!=6, since the
partition remains unaffected by the order in which the three 1’s are chosen.
So the number 8! /(3! 2!) must be divided by 3!, giving 8!1/(3!2!3!)=
8¢7%5X4=560. Again, inthe (2,2,2,1,1)-case the number 8! /(2! 2! 2!)
must be divided by 3! because of three 2’s, and by 2! because of the two
I's, giving 8! /(2! 21 21 31 21)=420. In this way all the numbers in paren-
theses in Table 23.11 can be rapidly calculated. Their sum is 4,140, as
stated in 23. 1.

23,12 The 154 conjunctive cases. From these 4,140 possible partitions
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we can now easily select the ones that are conjunctive with respect to the
three partitions Py=(m, %), Pi=(e& »), Po=(pt; &).

Since a face contains four points, an edge two and a vartex one, we
can at once eliminate all those partitions involving a 3, 5, 6 or 7, so that
we are left with the following cases (in addition to the two extreme Mbuti
and Ogalalla systems, with one and eight terms respectively):

4,4035; 4,2,2012); 4,21, 1(24); 2,2, 2,2(9); 4,1, 1,1,1(6);
2,2,2,1,1(44); 2,2,1,1,1,1(42); 2,1,1,1,1,1,1(12),

where we have added in parentheses the number of conjunctive partitions in
each case (see just below), the sum of all of them being 154. While there
is no difficulty in calculating these numbers algebraically, a geometric
argument is easier to follow and in the present case our powers of visuali-
zation can be aided by the following device.

We imagine ourselves provided with a solid 27/ 272" cube of wood
labeled j, six 27727/ 1" slabs labeled =, %, e, y, g &, twelve 2/ 1/ 17/
strips labeled =e, =y, mp, ¢, xe. 1y, Ag AP ey, ed, yu, y¢, and eight
1/ 1771’7 blocks labeled wep, wmed, =yp, wyh, yew xed, yyp, xyé as in
Figure 23.12 (cf. the labeling in Figure 23.10).

Tie Xed

ey Xep

bimae D S XY
TTY(P\ \\j

Figure 23.12 The cube made up of one slab, one strip and two blocks.
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Then the 154 sibling terminologies conjunctive with respect to (F,, P;, P;)
will exactly correspond to the 154 ways (see just below) is which the cube
can be built up from the eight blocks, four strips, two slabs or the cube
itself. For example, Figure 23,12 shows the cube constructed from one
slab (the ¢-slab forming the back half), one strip (the lower front yp-strip)
and the two blocks mespe and yep. This construction of the cube represents
a kinship terminology with four kinterms, one for sisters (¢), one for
younger brothers (yu), one for parallel elder brother (rex=mesu) and one
for cross elder brother (yeqe=fen). In other words it is the terminology
also represented by

mep jXeu 4 or mell | fey

YU YH ¢

In building up this terminology on the cube we imagine ourselves as first
placing the slab in upright position at the back, then laying the strip along
the bottom of the front half, and finally laying the two blocks on top of
the strip. Although the whole procedure will be quite easy to visualize
without a model, we can assure the reader that if he will actually provide
himself with such slabs, strips and blocks, constructed say from pieces of
cardboard fastened together with gummed tape, he will find it quite enter-
taining to build up the cube in some of the 154 ways that we now proceed
to describe. Cf. Epling Kirk and Boyd 1972; Nerlove and Romney 1967;
Kronenfeld 1974,

23.13 Calculation of the 154 cases. When the cube is built up of two
slabs in any of the three possible ways; i.e. left and right, top and bottom,
or front and back, each slab plays the role played up to now by a face,
namely the exposed face of the slab. Similarly, when at least one strip is
involved, the strip plays the role of an edge, namely the exposed edge of
the strip; and a block plays the role of a vertex, So in Table 23.11 a slab
is represented by a 4, a strip by a 2 and a block by a 1.

Beginning with the (4,4)-case we must ask: in how many ways can the
cube be built up from two slabs? The answer is 3, as mentioned just gbove,
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In the (4,2,2)-case, with one slab and two strips, the number of ways
is 12, because there are six positions for the slab, for each of which the
two strips can be laid parallel to each other in either of two directions.

The (4,2,1,1)-case will have 24 possibilities because it arises from
splitting either of the two strips into two blocks is each of the 12 possibilities
of the (4,2, 2)-case.

In the (2,2,2,2)-case 3 possibilities are provided by laying all four
strips parallel to one another in each of the three directions, and 6 more
by laying down two strips side by side in any of the six positions available
for a slab, whereupon the position of the other strips is already determined
by the condition that the four strips are not all parallel to one another.
So for the (2,2,2,2)-case there are 34+ 6=9 possibilities.

In the (4,1,1,1, 1)-case, there are 12 possibilities, since the single strip
may be laid along any of the twelve edges of the cube.

In the (2,2,2,1,1)-case we must distinguish three subcases:

i) the three strips are all parallel. Here there are 12 possibilities,
corresponding to the twelve positions for the missing strip, i.e. the one split
into two blocks.

ii) two of the strips are parallel. Here two of them must be halves
of the same slab, giving 6 possibilities, for each of which the third strip
can be laid in any of four positions, giving 6:<4=24 possibilities.

iii) the three strips are mutually perpendicular. Here there are 12
possibilities for placing the first strip, for each of which the second strip
can be placed in 4 ways, whereupon the position of the third strip is fixed.
But these 48 cases are alike in 3! =6, because the partition remains unaffected
by the order in which the three strips are laid down. So in subcase iii)
there are 8 possibilities.

Consequently, in the (2, 2, 2, 1, 1)-case there are altogether 12424 + 8=44
six possibilities.

In the (4,1,1,1,1)-case there are 6 possibilities, corresponding to the
positions for the slab.

In the (2,2,1,1,1,1)-case we must again distinguish three sub-cases:
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1) the two strips are halves of a slab which may be laid in any of six

positions for each of which it may then be split into the two strips in
either of two directions, giving 12 possibilities.

i) the two strips are perpendicular to each other. Here the first strip
may be placed in 12 ways, each of which leaves 4 choices for the position
of the second strip. But these 48 possibilities are equal in pairs because
the partition remains unaffected by the order in which the two positions
are chosen. So here there are 24 possibilities:

iii) the two strips are parallel but diagonally opposite, e.g. if one of
them lies along the lower left edge, the other lies along the upper right.
Here the first strip may be laid along any of the twelve edges of the cube,
whereupon the position of the other is fixed, and again these 12 possibilities
are equal in pairs. Thus there are 6 possibilities in this sub-case.

Consequently for the (2,2,1,1,1, 1)-case there are 12+24+6=42 pos-
sibilities.

Finally, in the (2,1,1,1,1,1, 1)-case there are 12 possibilities, since the
single strip may be laid along any of the 12 edges.

23.14 Complete table of the conjunctive cases. These 154 partitions
conjunctive with respect to (P,, P,, P,) are written out in full in Table 23. 14.
For brevity the single vertices are omitted in each partition, since they can
be immediately supplied. For example, in the partition listed as = in the
(4,1,1,1, 1)-case the four single vertices corresponding to the four 1’s are
xeu, xed, xyy, xyd, since the w-face includes the other four vertices wept,
mep, wyp and zyp. Similarly, in the partition listed as =y, 1y, ye in the
(2,2,2,1,1)-case the two unlisted vertices are rey, e, since =y includes
zype and myg etc.

23.15 KEvolvable partitions. Let us now say that a conjunctive partition
is evolvable if it can be obtained from the one-class partition represented
by the Mbuti sibling terminology by a sequence of binary splits in which
an already generated class is split into two classes; i.e. either the entire cube
is split into two slabs, a so-called primary split, or a slab is split into two
strips, a secondary split, or else a strip is split into two blocks, a tertiary split.
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Table 23.14 The 154 conjunctive partitions

(8) whole cube
(4,4)
T, X e U M@
(4,2,2)
T, xe, X¥; %, X&, AP
% Te, WY, ¥, T, TP
e, Vi, v e Y, XU
¥, et, ep; u, we, ye
ty Th, APy 1, ed, ¥
b, T, xb; b en, v
(4,2,1,1)
T, ey W XY W, LK, T, AP
A Te; X, WY ¥, TH; X, T
e, yu; e, Uh; e wy; e AU
v, ep; U, e v, we; v, xe
1y why py Ahs # ed;s p, v
b, we; b, xu; b, e b, vy
(22,223
we, xe, WY, XV T, X, Th, K
en, eh, vu, v, me, ye, vy, v
T, AL ep, yh en, e, WY, (¥
T, AV, ey, ed; wh, xp, ex, vt
v, Yh, we, xe
(4,1,1,1,1)
LA e VoM B
(2,2,2,1,1) subcase i
TY, AV, Xe; Te, xe, XV wh, xb, xu;
Tht XMy Xh
Te, WY, XV, e, Wy, te; wy, Th, A,
e, TP, AL
ed, yu, b e, vy, yh; en, ep, yd;
eL, eh, Ui
(2,2,2,1,1) subcase ii
xe, ve, ¥y mwy, xu, Xy 2y, ep, ed;
e, XM, AP

X, ed, yb; wh, xe, xv; xb, en, v
T, xe, LU
e, ¥, yd; wpe, wh, XU TY, en, ed;
L, wh, xe
T, ed, yb; me, my, xb, wh, en, v
e, Ty, 11
Y, XY, ehy TP, xb, Vi, TUL XY, €4
WL, XE, Yo
me, xe, yp; wh, 1P, en; we, ye, wi;
T, L, ed
(2,2,2,1,1) subcase iii
wh, e, Wiy mu, e, Up; wh, AU, en;
TH, XY, ed
TY, Xit, ed; Ty, 1h, en; we, xu, yh;
e, X, Vi
(2,2,1,1,1,1) subcase i
e, Wy mwp, whyode, vy xu, X
Te, Xe; ep, ed; wY, (U; ed, vu
T, ey oepr, vy wh, xd; en, ed
(2,2,1,1,1,1) subcase ii
we, ypy e, xebi e, Vi Te, yd
T, Xit Y, L, TU, ep; T, eh
T, Xes T, XY T, e Ti, Y
b, xe; wh, xv; wh, e; wh, yu
xe, vy xe, v xw, ep; v, ed
xit ediaw, yp; xb, ems xp, vu
(2,2,1,1,1,1) subcase iii
e, XU Ty, e, mp, gb; wh, g
ett, yb; eh, yu
(2,1.1,1,1:1,1)
me; wy; wp) we
xe; AV xu; X
e eh; yp; v
€141,1:1,1.1,1..1)
eight single vertices
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Then it is perhaps a plausible conjecture that the simple Mbuti system
with one kinterm for all siblings is historically the earliest, and that all
other evolvable terminologies have developed from it by successive binary
splits. ~ For example, the “brother | sister” system inherited by the English
language may have come into existence when a desire was felt, for some
social or religions reason, to distinguish male from female referent; or in
our geometric terms, to split the cube vertically into two slabs, front and
back. As can be seen from Table 23. 14 all the 154 conjunctive partitions
are evolvable except the eight cases with three mutually perpendicular strips
(sub-case iii of the 2,2,2,1, 1-case), which are not evolvable because the
two blocks cannot have resulted from splitting a strip nor can any of the
strips have resulted from splitting a slab. Consequently, there are 146
evolvable partitions, and the fact that they include all the forty actual sibling
patterns in Table 23. 16b may perhaps lend credence to the above conjecture
that sibling terminologies develop by binary splits.

23.16 Comparison of relative sex with absolute sex of speaker. Of the
4,140 theoretically possible partitions of eight types of sibling-pairs we give
a complete list in Table 23.14 of the 154 that are conjunctive with respect
to the set of partitions Py=(x, x), P,=(e, ¥), Py=(g, ¢) where = and
refer to sex of speaker relative to sex of referent. Let us now examine
the situation for the set of partitions P=(m, f), Pi=(e, y), Po=(pt, ¢),
where m and f refer to absolute sex of the speaker. Since m=mnp+yd, f=
mp+yp and conversely m=mp+ fp, y=m¢+fur, the two partitions P, and
P{ are on an equal footing. In other words, there will also be 154 partitions
that are conjunctive with respect to (Pl, P,, P,), and we see as follows that
74 of them are conjunctive for both (P, P,, P;) and (P, P, P,).

Every vertex is conjunctive for both, e.g. reg=mep, and similarly every
strip containing both a = or y and a y or ¢. So to eliminate the partitions
in Table 23. 14 that are not conjunctive for (P, P,, P,) we need only strike
out those that contain one of the two slabs =, y or one of the four strips
we, ©y, y& yxy. By actual count we find 80 of them, leaving 74 that are
conjunctive for both (P, P, P,) and (P, P, P,). Thus we have the
following table for the 4,140 possible sibling terminologies.
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Table 23. 16a Comparison of the two sets of partitions

154 are conjunctive for (P, P, P:)

154 are conjunctive for (P}, P, P;)

80 are conjunctive for (P, P, P;) but not for (P}, P, P:)

80 are conjunctive for (P, P, P;) but not for (B, P, P.)

74 are conjunctive for (P, P, F.) and (P, Py, P
3906 are disjunctive for (P, P, Fi) and (P, P, P:)

Then it is natural to ask the same question concerning the two sets of
partitions (P, P, P;) and (P, P;, P;), interpreted now as the attributes of
relative sex (P,), absolute sex of speaker (P;), relative age (P,) and sex of
referent (P,), as we asked about the balls in 23.4 when the attributes were
Just as we there assumed that for
most observers material would seem a more natural criterion than manage-

material, manageability, size and shape.

ability, so we may ask which of the two criteria, relative sex of speaker
and referent or absolute sex of speaker, is a more natural criterion for
sibling terminologies.

To answer this question we list the fifty-two sibling terminologies, i. e. those
in Figure 6. 5d, in the form of Table 23.16b. By actual count we find that
38 are conjunctive for both (P, P, P;) and (P;, P, P;), 14 are conjunctive
for (P, P, P;) but not for (P;, P, P,,), and none at all for (P, P, P,)
but not for (P, Py, P;). In particular, the primary split (m, f) by absolute

Table 23.16b Fifty-two sibling patterns (cf. Figure 6.5d)

@DJ @z @ u @ @D e v

® %, we, wY ® x, wp, weh @ , 1u, xd ® &, mu, o

@ #, ed, v @ b, ex, yu a e vy, o @ v, ex, ed

@ v, me, xe @ e, pu, dv a x v @® x, we

@ re, ny, xu, 26 B 2, wh @ = b @ wu, wh, 2o, ¥
@ mp, xp, ed, vp @ b, yu @ oep, yu. g, xh G ey, ed, vp, vo
@ e, yp @ v, ed @ e, dy @ e, py

@ eu, ed, py, dy @ 14, xp @y @ me, wy, 1

@ meh, xpty xh @) wh, 1, wp U9 Th, est, v G e, v, Yy

@ eh, v, v 69 e, eh, up 9 ep, v e a0 ep, e, pu

@ ru, ¥ @ we, my @ xp, 19 @y wee, wh

@ ep, v @ ed, v @) ey, ep U xu

@ yu vp &) ed €D mept, +v, LUD
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sex of a speaker is not found for any tribe, although the other three primary
splits: (x, ) by relative sex, (e, ¥) by relative age, and (g, ¢) by sex of
referent as in English, are all represented by many tribes. The languages
of the world have shown a marked preference for distinction by the relative
sex rather than absolute sex of ego, perhaps because a young child is less
aware of his own absolute characteristics than of differences and similarities
between himself and persons to whom he is speaking.

However, the most interesting feature of sibling terminologies is not so
much this distinction between relative and absolute sex of the speaker as
the fact that essentially all of them are conjunctive with respect to the
three attributes of relative sex, relative age and sex of the referent. In their
book A Study of Thinking [1956] Bruner, Goodnow and Austin eloquently
emphesize the importance of partitioning in all mental activity, and they
establish a general abhorrance of disjunctive concepts in social groups, in
the legal profession, in the history of medicine etc. As they say: “one
eventually begins to wonder whether Nature herself does not abhor dis-
junctive groupings.” To their imposing array of examples the testimony of
sibling terminology has now been added.






CHAPTER XXIV

Summary of Types and Subtypes

24.1 The equivalence-rules. In this final chapter we summarize the
equivalence-rules and string-coincidences by which kinship systems are clas-
sified into types and subtypes.

The equivalence-rules are listed in Table 24.1 in terms of x and vy,
although they could equally well be listed in X and Y, since x=y is
synonymous with X~7Y. Kinship systems involving only the first five sets
of rules have non-prescriptive marriage and are therefore monoids, whereas
systems with any of the last five have prescriptive marriage and are there-
fore groups. For prescriptive systems the four-group-rules xf=3Xx=yy=79y
=i (11.3) are tacitly understood, so that prescriptive marriage implies the
merging rules xX=yy=i. The rules for such systems can also be, written
in x and w, or y and h=w etc. In all cases every rule implies its inverse
rule; e. g. x=y implies X=¥, xy=§ implies yX=y, (Xy)?=i implies (§x)?=1.

Table 24.1 Equivalence rules

1. non-bifurcate rule: x=y (5.3)

2. merging rule: j=i (7.2)

3. Troquois rules: yx=yy; xx=xy: x§=vyX (92.3)

4. Omaha rule: xy=¥9 (12.1)

5. Crow rule: yx=% (12.7)

6. section rule: x"=y"=i (Kariera, m=n=2; Karadjeri, m=2, n=4)
7. commutative rule: xy=yx (15.1)

3. sister-marriage rule: Xy=i (11.10)

9. direct exchange rule: (Xy)*=i (19.1)

10. indirect exchange rule: (Xy)'=i, ¢>2 (15.1)

261
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24.2 Types of systems. The thirty-odd systems considered in this book
can be classified by their sets of equivalence-rules as in Table 24,2,

24.3 'Types and subtypes; the catalog. Finally, each of these systems
is uniquely determined by its subtype, i.e. by its equivalence-rules ER and
its string-coincidences SC, as listed in Table 24.3, which would form part
of our proposed catalog of all kinship systems, For non-prescriptive
systems the few affinal coincidences are omitted (e. g. hocsote for XX and
WXX in Seneca); and for non-prescriptive merging systems the regular cut-
off rules As+n_Az, Az+n A2 are understood except where others are expli-
citly stated (e.g. Twana has Att*~A), and the merging rule j=1i may be
followed by one or more of the lineal letters £, m, s, d,... in parentheses,
indicating distinct lineal terms: e. g. Twana has j=i (f; m, ¢) to mean
F+FB, M#+MZ, C+JC. The Crow-Omaha systems listed here, except Hopi,
are understood to have pf| pm for grandparents and cc for grandchildren.

We have been guided throughout by a desire to use mathematics in
such a way as to construct a concise and complete catalog of kinship 5ys-
tems. Unlike the natural sciences, however, with their many classifications
of various kinds, the subject of kinship terminology is dominated by human
variability. For our purposes the situation would be ideal if all kinterm
recurrences were already accounted for by equivalence-rules, but we have
seen that every system, prescriptive or non-prescriptive, requires supplemen-
tary statements. For non-prescriptive systems the example of the Hopi
Indians shows that, the refractory string-coincidences may become unpleasant-
ly numerous and should perhaps be replaced by generation patterns from
Chapter Six. As for section systems, in some cases, e, g. Aranda or Dieri,
the terminology fits quite well into the sections, but in other cases, e. g.
Murngin or Kokata, the entries in Table 24. 3 suggest that some form of
geometric diagram might be preferable, even though it would take up more
space in the catalog. Also we must emphasize again (cf. 12.8) that several
possible types of systems are omitted in the above list. For example, there
exist interesting Eskimo systems that resemble the English system in signifi-
cant respects. We urge our readers to investigate these other systems with a
view to incorporating relevant additions or changes in the proposed catalog,
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Table 24.2 Systems listed by their sets of equivalence-rules

System

Equivalence-rules  No. from Table 24. 1

MONOIDS
English (Figure 4.9)

Yurok (7.3)
Lower Burma (7.7)
Twana (7.8)

Seneca (9.4)
Hindi (9.5)
Mbuti (9.6)
Shastan
Tolowa
Comanche
Nepal

Fox (12.2)

Miwok (12.5a)
Tzeltal (12.5b)
Wintu (12. 5¢)

Pawnee (12.7a)
Crow (12.7b)
Trobriand (12.7c)
Hopi (12.8)

GROUPS

Kariera (13.35)
Karadjeri (15.3)
Murngin (16. 10, 16. 11, 171b)

Tamil and Telegu (10.2, 11.7)
Piro (11.8)

Taromak-Rukai (11.11)

Aranda (19.3)

Dieri (19.6)
Ambrym (20.1b)
Anti-Ambrym (20. 5)
Vao (20.4)

Kokata (20.6b)
Patrilateral (21.2b)

xi=y 1
x=y, j=i 1.2
j=i, xxX=x

J 4 2,3
YX=Yyy, Xx§=yX

i=i, x3=% 2, 4
i=i, yR=% 2. 5

Name and Symbol in pure mathematics

Xy=yx, x"=y"=i 6, 7
xy=yx, (Xy)'=i 7,9
Xy=i 8

X"'=y"=(Xy)=i 6, 10
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Table 24.3 Types and subtypes
English ER: xs=y
SC: APt AT~ AIJAN
s~ (ablineal), e~y, u,~d,
Yurok ER: x=y, j=i
SC:  u~g for Al e~y, sti~p, except J
Lower Burma ER: x=y, j=i (f, m s, d, pf, pm)
SC: p~¢ for A?
e~y exc J, Al
L~ exC yl
Twana ER: x=y, j=i (f, m, ¢)
SC: A'"~AY, u~p for A, A A, JA, ¢yl
e~y exc J, p~p, exc JA, ylp, pyZpyl
Seneca ER: j=i, xx=xy, yx=yy, x§=y%
SC: XA~YA, AX~AY, aX~a¥
p~p for AR, e~y exc J, s, exc A
Hindi ER: same as Seneca with j=i (f, m)
5C: AA~J, e~y, La~ih,
Mbuti ER same as Seneca
SC: X~¥, XA~YA, AX~AY
H~h exc A, e~¥, [t~
Fox ER: j=i (m), x9=9%
8C: X~¥, p~¢ for al&, A
e~y te~ih,, @Y ~alX
Southern Miwok ER: =i, x9=9¢
8C: R~%, u~¢ for JA, A2
e~y exc d, Yylg
#:"""75‘:1 &J?“"‘&JX
Tzeltal ER: j=i (f, m), x9=9%
SC: M""’¢ r()l‘ 'UJ' At A’

e~y exc J, p,~p, exc elu, Al
XIp~elp, vI~¢pX
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Wintu

Republican Pawnee

Crow

Trobriand

Hopi

Kariera

Karadjeri

Murngin

Tamil

sC:

ER:
S5C:

ER:
3C:

ER:
SC:

ER:
5C:

ER:
SC:

ER:
SC:

ER:
SC:

ER:
SC:

j=i, xy=y

p~e for yl, A, A®

e~y exc J, gy~ Nig~eld
Ylp~YX, pd¥~X¥, pi%~yl

i=i, y¥=2%

K~Y~pJX, p1~¢p for A, A?
e~y, /-lz""";,’h Y"‘"XJQ{’, HJM""’QBJ¢
=i xg =3

XIp~Y, XYl ¥~ X
t~¢ for A%, e~y exc ]

e, exe J, pylp~gylp

j=i, x§=x

X~Y, XIp~XX, wI¥~pIX

L~ exc A, e~y exc al@, u,~d,

=i, x9=x

XX~YX, XX~X¥, X~¥%
PIX~RX, pn¥R~Y, pd¥~u¥Y¥
PYR~pYV~XR, YIu~YYiy

XeoXYIgt, Y~XIgt, pti~e, for A, A?
e~y for I, pt,~g¢, exc ylp, ylu~dylp

xi=yl=i, xy=yx

Ha~h, exc Alp, JAu

Xi=y'=i, xy=yx
/.t’“’¢ CXe J, Y, Yzy X; R, Y:I
e~y, ”a""'(ﬁl

x'=(%y)* or (Ry)%, xy=yx

see Figure 16.3b and the remarks on

periodicity in 16,3, 16.4

(Xy)=i, xy=yx
aX~a¥, pn~g¢ for pAA
e~y exc J, m~g, exc AA

AA~AX, X~¥, X%+J, AR~AA
p~p for gAA& in Go, e~y exc J
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Taromak-Rukai ER:
8C:
Aranda ER:
sC:
Dieri ER:
@
Ambrym ER::
S8C:
Vao ER:
8C:
Kokata (Table 20.6) ER:
8C:

Purum (for three clans) ER:

5G:

Xy=i

APHO AR ABINL AR
u~p for J, A, A?

e~y cxc J, po~d,

xi=yl=(Ry)'=i
X2+J. x?n—l+i:um1
s~ exc X, X5 Y, e~y exc J g,~¢,

y'=xt=(gx)*=i
Xigd, p~ exc X, Y, ¢l
e~y exc J, t,~p,

xi=yl=(Ry)*=i
see the three “not-straight” remarks in 20.3

y'=(§x)'=x'=i

X~Y?, K ¥, X0 R0~
Yi~J, XIp~YId,

pt~p exc X, Y, YX?

e~y exc &la, o,

x*=(Ry)*=y*=i
XX~YY~XY~YX~XY~YX (bagali | kabili)
X XY ~Y'~XYX (maradu | waia)
XY'=Y*X (umari | undal), Y~Y*X¢ (nyundu)
u~g for I, YR e~y, p~do,

(Ry)i=i, xy=yx
YXo¥Y ¥ X~K?

Wi YXp~Y pu~YXp~YX
vl~YXg, u~¢ for Xi, X, X, yJ
e~y exc J, u~d,

24.4 The mathematical method in kinship study. In this final section
let us consider some of the advantages of the mathematical method in
addition to its practical value for the construction of a catalog of kinship

systems.
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Common to all mathematics is the concept of a set of elements, left
undefined, and the derived concept of a structure, i.e. a set of sels of
elements (1.1). The mathematical method of studying any subject, e.g.
kinship terminology, consists of listing in advance a small number of con-
cepts, in our case the two concepts of “person” and “kinterm”, which are
then defined solely as having a certain small number of properties, also
listed in advance as a set of axioms (1.3). After these two lists have been
decided on, every other concept must be defined as a structure on the set
of concepts so defined, e. g. persons and kinterms.

A theory constructed by this method for kinship study will make pre-
dictions that can be verified (or falsified) in the field, a necessary property
of any useful scientific theory. For example, our present theory has pre-
dicted the existence or four- and six-clan connubia in Murngin (16.6), the
coincidence of subsections referred to the left-hand and right-hand lines of
Warner’s seven-line chart (16.2) and in the inner chart of five lines (17 2y,
the existence in a six-clan connubium of exactly two twelve-generation
matricycles (Figure 16.10) and, as an implicit corollary, the practice of
ZDD-exchange marriage (16.12). In this particular case the field-investigator
and the mathematical predictor were working at the same time, each with-
out knowledge of the other.

In anthropology, in contrast e. g. to astronomy, the opportunity to test
theoretical predictions may now no longer exist, through rapid attrition of
aboriginal languages and customs. For example, our theory predicts that,
if the four-clan connubia discovered by the field-worker have not yet com-
pletely disappeared, Murngin tribesmen can be found who will tell us that
the daughter of waku is kutara under some circumstances and mari under
others, just as the field-worker has reported (16. 1) that the daughter of
gurrong may be due-elker (on the left side of Warner’s chart in Figure
16. 3b) or momo-elker (on the right side), and we make analogous predictions
for connubial complexes like Purum, Jinghpaw and Siriono. As a kind of
negative counterpart to prediction the mathematical method also uncovers
mistakes that otherwise would almost certainly pass unnoticed, e.g. the
proposed connubium for Iatmul in 22. 6.

Other statements that resemble predictions are more in the nature of
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conjectures that may indicate to the field-worker about what to look for in
the field. For example, our statements about possible three-clan connubia
for Purum etc. (18.7) suggest that it may be profitable or interesting to
look for them, but make no prediction about the probability that they will
actually be found.

A property of mathematics which, though not strictly part of its defini-
tion, is nevertheless of extreme importance is the conciseness and manipula-
bility of its notation. For conciseness compare the statement JX¥2p~J¥35
with Morgan’s sentence at the end of Chapter Eight, and for manipulability
note the case with which our notation enables us to calculate a desired
kinterm in any system, say for SWFFZ in Kariera (14.3), either algebrai-
cally by equivalence-rules or geometrically on a kingraph. With this nota-
tion we can rapidly carry out otherwise laborious operations—reduction,
expansion, substitution etc.—that add to our konwledge of a given system
or to the clarity and pleasure with which we perceive what we already
know. Who among us does not derive pleasure from seeing Wintu second
cousins described by a simple Omaha equivalence-rule (12.5) or the myster-
ious Kokata terminology explained as rotating direct-exchange marriage
(20.6)? Lévi-Strauss (1960: 53) expressed his belief that

an algebraic treatment of, let us say, symbols for marriage rules...can
teach us, when fitly manipulated, something about the way a given marriage
system actually works, and bring out properties not immediately apparent
at the empirical level.

Such is the credo of the mathematician, which we have tried to illus-
trate in this book.



APPENDIX ONE

Numerical Kinship Notation System

Mathematical Model of Genealogical Space

JoHN H. T. HARVEY and PIN-HSIUNG LIU

The idea on which this paper is based is the fruit of my discus-
sions with Mr. Harvey at Harvard during summer 1965, By the
end of October we presented the first draft of this paper to Pro-
fessors Maybury-Lewis and White for comment. In the meantime
a new category diagram was adopted, differing from the one used
in the first draft, which enabled us to reach new results and to
compose a second draft by the end of December. In addition to
the numerical system for kinship categories, we already started to
establish the basis for the numerical system of kinship types and
its operational rules,

As the system opens a new field for kinship study, we also
planned to set up a transformational analysis of kinship terminology,
as well as a formal analysis of kin group, especially for the section
system, to show the applicability of the group theory and other
mathematical methods to this study. This would lead it to genuine
kinship algebra (which we would like to name kinology) the us-
ability of which has been in doubt up to now.

Due to certain deficiencies in the second draft we started to
work out a third draft for clarification and addition. But through
my sudden depature from Cambridge, this could not be realized and
our cooperation had to be postponed. Considering, however, the
possible usefulness of the study for my colleagues and the fact that
the working out of the final draft will require a considerable length
of time, T herewith publish the major part of the second draft in
its present form.

I take the opportunity 1o express my gratitude to the Harvard-
Yenching Institute for having received me as a visiting scholar
during the years 1964-1966, —P.H. L.

KINSHIP CATEGORIES

We define a kinship category as a set consisting of all egocentric relation-
ships expressible by a given sequence of sex-generalized lineal links, i.e., in
terms of parent and child.

269
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The eight primary relationships of the traditional language-based
kinship notation are not uncommonly supplemented or replaced by four
without specification of sex. A notation proposed by Romney (Romney and
D’Andrade 1964), which analyzes these twelve terms into relational and
sexual components, provides a sex variable “a” in addition to sex constants
“m” and “f” to the same effect, and expresses what are essentially kinship
categories by sequences of the relation markers “+”, parent link, “—",
child link, "0”, sibling link, and “=", marriage bond.

The further step of reducing to two primitive relationships is implicit
in a notation suggested by Radcliffe-Brown (Radcliffe-Brown 1930), where
the up-down angle for a collateral link and the down-up angle for an
affinal link transparently are ordered pairs of the up-slant for an ascendent
link and the down-slant for a descendent link with the intervening terms
unstated.

It is important to note that, unlike generalization of sex, decomposition
of non-lineal links into lineal transitions involves no loss of information,
except where “parent’s child” may have been utilized to distinguish half-
sibling from full “sibling”. This is because it merely exploits the redundancy
in the traditional system that such transitions must be mediated by sequences
of non-lineal links, minimally a collateral link between ascent and descent
and an affinal link between descent and ascent, the sequences alternating
unless step-relations are intended.

It is obvious that a collateral link may be replaced by ascent to and
descent from lowest common ascendents LCA, the understood parents, and an
affinal link by descent to and ascent from highest common descendents HCD,
the actual or potential offspring. If the latter is considered an artifice, we
might point out the genealogical irrelevance of marriage without issue, and
the sociological implications of the linguistic phenomenon of teknonymy.

A kinship category, then, is equivalent to a kinship term compounded
from the primary relationships “Parent”, “Child”, “Sibling”, and “Spouse”,
with the exception that the seldom exercised option of indicating half-
siblinghood is not open.

The advantage of reduction to a pair of primitive relations, particularly
to a reciprocal pair with suggestive mathematical analogs, is that it opens
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up the possibility of applying powerful techniques to operations on complex
terms,

NUMERICAL KINSHIP CATEGORIES

We pursue the mathematical analogy by giving each kinship category a
numerical designation, or numerical kinship category C.

If we map the sequence of parent and child links defining a kinship
category into a corresponding sequence of +1’s and — 1’s, respectively, it is
apparent that we may consolidate by summing subsequences of like sign, so
that a digit d stands for 4 consecutive generations in a given direction.

Since signs now necessarily alternate, we may adopt an alternate sign
place system which marks sign by position only, just as ordinary numerical
place systems mark successive powers of the base by position only. We
assign the first place and all subsequent odd places to positive values, or
generations of ascent, the second place and all subsequent even places to
negative values, or generations of descent. A negative value for an initial
digit is indicated by a preposed zero, or empty first place. Similarly, for
reasons that will become evident later, a final zero is written after a final
positive digit.

As in other place systems, zero functions as a place-holder. We restrict
it to initial and final place, with the exceptions below. Note that we define
“digit” to exclude zero, d >1. The use of zero rounds out all numerical
categories to an integral number of ordered pairs p,, each consisting of a
positive place x, followed by a negative place y;, p, = z,y,, the subscript
being the ordinal number of the pair. The null category, ego, is written 00,

A numerical kinship category, then, has the canonical form

C= 2 Talfzs * s Typ¥nps
where the number of pairs Np may be one or more, Np > 1, the value of
the first and last places may be zero or more, z, >0 < ¥y and the value
of any intervening places must be one or more, esy = 1 < Yeewype

With d; = 1 and the number of digits Nd also one, we have the lineal

primary categories:

10 = parent;

01 = child.
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With Nd = 2, we have the non-lineal primary categories:

11 = (half-) sibling;
0110 = spouse.

With Nd > 3, however, there will be one or more 1’s which are neither the
initial nor the final digit, a fact which invariably signals a step-category.
Thus, for three and four digits, we have the following “primary” step-
categories:

1110 = step-parent;
0111 = step-child;

1111 = step-sibling;
011110 = co-spouse.

If we avoid “inside 1’s”, the minimal corresponding non-step-categories are:

1210 = sibling’s spouse;

0121 = spouse’s sibling;

1221 = sibling’s spouse’s sibling;
012210 = spouse’s sibling’s spouse.

Membership in the familiar major groupings of kin types may be
determined by inspection of the overall form of a numerical kinship category,
as we demonstrate by listing the following generalized categories, in which
the digit variable T > 1 replaces the 1’s of the previous examples:

00 = ego;

10 = ascendent;
01 = descendent;
i1 = collateral;

0110 = affinal:

1110 = collateral-affinal;

0111 = affinal-collateral;

1111 = collateral-affinal-collateral ;
011110=affinal-collateral-affinal.

The consanguineal categories, with no affinal transitions, are the one-pair
categories, if we agree that ego is reflexively consanguineal. In general,



NUMERICAL KINSHIP NOTATION SYSTEM 273

each additional pair means an affinal transition, so that the number of affinal
transitions Na is one less than the number of pairs, Na=Np — 1. The
number of collateral transitions Nco is the number of pairs less the number of
pairs with zero Nz, Ne = Np — Nz.

In one-pair categories, of course, Nz = 1 indicates lineality, considering
ego reflexively lineal, with the empty place giving the direction. In multi-
pair categories, initial or final zeros, or 2, = 0 and Yy, = 0, indicate initial
and final affinal transitions, respectively. Conversely, 2, > 1 and Vs > 1
indicate initial and final collateral transitions.

We have already pointed out that “inside 1’s” are diagnostic of step-
relations. The non-step-categories of three and four digits may be repre-
sented by partially generalized categories with 2 > 2:

THE CATEGORY DIAGRAM

The standard category diagram may be read as a simple two-dimensional
representation of the consanguineal categories, or all one-pair categories

zy,. (Figure 1)

Wl »l0| W ‘ ol Since z is necessarily positive and

o1 | 11| 21! 3 | a1 | 51| 61 ' ¥ necessarily negative, we are confined
]
|
|

e = to the IVth, or lower right, quadrant

02112 122 132 | 42| 52 | 62\ of the infinite Cartesian plane. The

| e

Bl 13]alslea lineal categories Nd <1 are on the
—f— | — ————— ——| axes: ego 00 at their intersection,
04 | 14 | 24 | 34 ) 44 | 54 | 64 | the origin, the upper left square; as-

endents 10 on the z-axis, in the z,th
05 | 15| 25 | 35 | 45 | 55 | es | © A e Ll ARey
:‘ LT square to the right along the top row;

06 | 16 | 26 | 36 | 46 | 56 | 66 descendents 01 on the y-axis, in the
Figure 1. Category dlagram. yith square down the leftmost column.

(Consanguineal) Collateral categories 11 are in the
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quadrant, at the intersection of z,th column and y,th row.

In general, a consanguineal category x,y, is located in the square x,y,,
where the value of z, may be read off the ascendent categories in the top
row and the value of y, off the descendent categories in the leftmost column.

The category diagram may also be read as an n-dimensional representa-
tion of multi-pair categories of n-digits. Note that the alternate sign prin-
ciple implies that we are confined to only one of the 2 hyper-quadrants
marked off by the n axes of an n-dimensional space.

In the two-dimensional case we considered the category z,7, to be re-
presented by the square z,»,. In the n-dimensional case we consider that
it is represented by the path from the origin to z,»,: a null path for ego
00, a path to the right for ascendents 10, a path down for descendents 01,
and a path to the right to the lowest common ascendent LCA, in the square
x,0 followed by a path down for collaterals 11. In other words, we re-
interpret the expression z,y, as an ordered pair of instructions for a move
x, squares to the right followed by a move g, squares down, with 0 an
instruction for a null move, the path thus traced standing for the category.

Now, to take the simplest multi-pair categories, affinals 0110, we may
treat Oy,2,0 as calling for a null move to the right, then a move y, squares
down, then a move 2, squares to the right, then a null move down. In
other words, for any given 2, =z, and y,, Oy,2.0 is the inverse of z,y,,

the path along the other two sides of ;
00 | 10 | 20 | 30 | 40 | 50 | 60

a rectangle, reaching the same square.

It is, in fact, what we discuss below 01 | 0110|0120 | 0130 | 0140 | 0150 | 0160

as the negative reciprocal. The point |——f—— N O
at the moment is that more than one 02 02_10 0220 0230 02{_0 _0250 0260

path leads to a given square. An | o5 |30 0320| 0330 | 0340 | 0350/ 0360
affinal path passes through the highest |- —--|-—— Lo

common descendent HCD, the implied | 04 | 0410|0420 | 0430 | 0440 | 0450 | 0460

tial) child or children in th L e
(.Pf’tﬂtll ial) ildren E | ol usel s b s
link, in the square Oy,. el hotcdboo oo

It is obvious that this procedure 06 | 0610 | 0620 | 0630 | 0640 | 0650 | 0660

may be extended to cover cate- Figute 2. Category dlagram

gories of more than two digits. A ( Affinal)
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collateral-affinal category ,y,#,0 calls for a path x, to the right, then N
down, then =z, to the right. An affinal-collateral category Oy,z,y, calls for a
path y; down, then =z, to the right, then y, down.

In general, a category z,y,2,05++++Zy,¥y, is shown by the path traced
by the indicated sequence of » pairs of moves z, to the right followed by
¥: down, with the value zero for a null move limited to first and last place,
z, and yy,.

If step-categories are to be excluded, the digit | will appear only as
shown in the pairs 1y, 01, 10, zy,1, with “zero or nothing” on its outer
flank.

It will be seen that there is a unique path, as well as a unique number,
corresponding to every possible category, and a unique category correspond-
ing to every possible path, as well as to every possible number.

Note that tilting the diagram — 45° restores the conventional semantic
and visual orientation of genealogical space to the vertical component of
the axes, up (and to the right) for ascent, down (and to the right) for
descent.

Tilting it 45° in the opposite direction, clockwise, makes it a blueprint
of the device at the IBM exhibit at the New York World’s Fair that de-
monstrated binomial distribution, or the normal curve. Balls inserted at
the origin on top and free to fall through the sides of the squares faced a
succession of left-right “Choices”, the random resulting paths leading to a
statistically predictable distribution tapering from the center out at the
bottom, approximating Pascal’s triangle. This isomorphism allows simple
calculation of the number of paths, and categories, of various kinds by
well-known formulas, as discussed below.

All categories “in” a given square, that is, whose paths reach the square,
share the same values of four properties which we now define. This con-
vergence is thus not “noisy”, in the information theory sense, but, rather,
meaningful,

THE POSITIVE AND NEGATIVE SUMS

The positive sum Sx is the sum of all digits 2, in a category, and the
negative sum Sy is the sum of all digits »,. All categories in a given square
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0 1 2 3 4 8 6 0 0 0 0 0 0 0
0 1 2 3 4 5 6 1 1 1 1 1 1 1
0 1 2 3 4 5 6 2 2 2 2 2 2 2
__0 1 __2 3 ‘ 4 5 6 3 3 3 3 .;_ _3_ 3
0 l 2 3 4 5 6 4 4 4 4 4 4 | 4_
o1 |2|3]|4]|5]c%s ss|s|s]|s s | s
i 0'" _l_ 2 3 4 5 6 6 6 _ _6 6 6 | 6 _6_
Figure 3; -I;;;itive sum Sz, (e Figure 4. Negative sum Sy.

have the same values of Sz and Sy, which are, of course, the values of z,
and y,; of the collateral category occupying the square. (All squares on
the axes contain only a single lineal category.)

All categories of a given Sz are thus crossed by a vertical rook’s move,
all those of a given Sy by a horizontal rook’s move. We thus have a
coordinate system in which each square is identified by a coordinate pair
SxSy, the values read off from the lineal categories as for collateral cate-
gories.

THE ABSOLUTE SUM AND (RELATIVE) DIFFERENCE

The absolute sum Szy of a category is the sum of its posistive sum Sz
and negative sum Sy, or the length of its path in one-square moves. All
squares of a given Szy are crossed by a bishop’s move from one axis to
the other. The value may be read off from either of the lineal categories
at the ends of the diagonal, if the axes are extended sufficiently.

The absolute sum is the measure employed in the Korean “inch” system
of kinship terminology, where an uncle or aunt 21 is “three inches” removed,
a great-uncle or great-aunt 31 or a first cousin 22 “four inches”, a first
cousin once removed 32 or 23 “five inches”, and so forth, the system being
restricted to consanguineals and excluding affinals.

Swy combines with the number of digits Nd in the formula which
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0 1 2 3 4 5 6 0 1 ! 2 3 4 l 5 6
1 2 3 4 5 6 7 ! -1 0 1 2 ! 3 4 5
slalals!ls| vl w| [=a]l=| o 2| 3] 4
3 4 5 6 7 8 9 | —3- -2 -1 0 i 2 3
4 _5 _6 —7 8 9 lf.)_" —4 | =3 —_."& _ =1 i 0 1 T
5 6 7 8 T 10 | 11 —5 »—4 —f; -2 E -1 i 0 “1l
678 ] 9 |10 | 11 | 12 ' —6|—5|—-4| -3 ‘ -2 |-1] 0
Figure 5. Absolute sum Szy. Figure 6. (Relative) Difference Dzy.

assigns a category to the nth “order” (Radcliffe-Brown 1930) or to the class
of n-ary “relatives” (Murdock 1949), n = Szy — Nd + 1. In conventional
notation based on four primary relations, order is simply the number of
terms. This formula corrects for the fact that our notation adds Nd — 1
implicit LCA’s and HCD’s, one for each sibling link and marriage link,
respectively, namely the last wnit in each digit but the last. First cousin
22 is 4 — 2 4+ 1 = 3, tertiary.®>

The absolute sum Szy combines with the positive sum Sz and the
negative sum Sy in the formula for the number of categories Nec in a given
square, which may be computed from any category in the square by Ne =
Szy!/Sr!Sy!, where n factorial n! = 1.2.3.....n. The number of cate-
gories per square for Sz << 6 and Sy << 6 are shown in Figure 8.

The (relative) difference Dzy of a category is the positive sum Sz
minus the negative sum Sy, Dry = Sz — Sy. It is thus the sum of the
digits taking account of their signs, while Szy is the sum of their absolute
values. All squares of a given Dazy are crossed by a bishop’s move away
from both axes, and the value, which may be negative, is given by the
single lineal category at the bounded end of the diagonal. The relative

(1) It is interesting that Murdock writes "for our purposes” it will be sufficient to
class all who are more remote than tertiary relatives as "distant relatives™ (p. 95)
in a work which devotes approximately two hundred pages to kinship. Con-
sider that order mounts up so rapidly that second cousin 33 is already quinary,



278 FOUNDATIONS OF KINSHIP MATHEMATICS

0 1 2 3 4 5 6 1 1 1 1 1 1 1
1 0 1 2 3 4 5 1 2 3 4 6 7
2 1 0 1 2 3 4 1 3 6 | 10 15" 21 | 28
3| 2 1 0 | 1 | ‘z _‘ 3 1| 4 |10 |20 35| 56 _3_4
4 3 2 1 0 _l 2 B 1 K _5 15 | 35 70 .:’.26 210
] 4 3 2 1 I 0 1_ 1 6 21 | 56 | 126 | 252 46;
6 5 4 3 2 1 0 1 7 28 | 84 | 210 | 462 | 924
Figure 7. Absolute difference DAl ‘ Figure 8. Number of categories Ne. -

difference corresponds, of course, to the generation with respect to ego.
The main diagonal of the category diagram, Dzy =0, or ego’s generation,
is important as an axis of symmetry.

Computation of this useful measure may be simplified for multi-digit
categories by several readily discoverable heuristic aids such as cancellation
of mirror-image symmetry abccha, symmetrical repetition abcabe, “twin”
pairs aa, and so forth. In most practical work digits will tend to have
low values, and the chances of such patterns occurring will be far higher
than, say, in telephone numbers,

The absolute sum and relative difference together provide an alternate
system of coordinate pairs SzyDzy which is rotated 45° from the other.
Conversion from SzSy to SxyDzxy is obvious: Szy = Sz + Sy and Dzy =
Sxz—Sy. The reverse is also possible: Sz = Szy + Dzy /2 and Sy = Szy
— Dry/2. Note that a negative Dzy in effect inverts the operation in the
numerator.

THE HIGHER AND LOWER SUMS AND ABSOLUTE DIFFERENCE

Three other measures specify properties which are symmetrical with
respect to the main diagonal.

The higher sum Hzy is the larger of Sz and Sy, the lower sum Lzy the
smaller. All squares of a given Hzy are crossed by horizontal and vertical
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moves outward from the square Sz = Sy = Hzy, in other words, by a
right-angle parallel to that formed by the axes and Hzy squares from it.
All squares of a given Lay are crossed by horizontal and vertical rook’s
moves from the square Sz = Sy = Lay to the axes, in other words, by a
right angle that combines with the axes to form a aquare figure.

The lower sum, or, strictly, the lower digit, is the value of n in nth
collaterality. The higher sum seems to function as a measure of propinguity
in certain cultures, a given number of consecutive generations of ascent or
descent constituting a cut-off point for a given kind or degree of relatedness.

Subtracting Lzy from Hzy gives the absolute difference Dhl, the number
of generations from ego’s. This is, of course, the absolute value of Dzy.
We may then say that English cousinship terminology is of the form
(Lzy — 1)th cousin DAl times removed.> Squares of a given Dhl naturally
occupy diagonals parallel to and DAl squares either side of the main diagonal
(Note that in counting diagonal distance one must count stepwise.)

A coordinate pair HoeyLzy identifies two squares symmetrical with
respect to the main diagonal and DAl squares from it.

0 1 b | 3 4 5 6 0 0 0 0 0 0 0
1 1 2 3 4 5 6 0 1 1 1 1 1 1
2 2 2 3 4 5 6 _ 0 1 2 2 _ 2 2 2
3 3 3 3 4 5 6 0 1 _2_ 3 _'; 3 —3
4 4 4 4 4 h;_ 6_ 0 1 2 3 : 4 4 4-
5 5 5 5 5 - L. 6 0 1 ) _2 3 4 5_- 5
6 6 6 6 6 —6- T 0 1 2 3 4 5 6
.}‘;gure 9. Higher sum Hzy. Figure 10. Lower sum Lzy.
(Propinquity) (Collaterality)

(1) Compare the simplicity of this rule, once the conceptual infrastructure has been
established, with that of the rule given by Roark (1961).
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CORRELATIONS

We have pointed out that, while a coordinate pair SxSy or HzyDzy
identifies a single square of the category diagram, a coordinate pair HzyLzy
or SxyDhl identifies two squares which are symmetrically located with
respect to the main diagonal is symmetrically located with respect to itself,
and is thus uniquely specified.<?

Such a correlation between two squares implies two kinds of correlation,
negation and reciprocity between the” categories of one square and their
respective inverses in the other, each on a one-to-one basis. When the
correlation is between a main diagonal square and itself, each category finds
its inverses in the same square. Every category finds its negative reciprocal
in its own square.

The negative (— 1)C of a category C is the product of its scalar multi-
plication by — 1, inverting the sign of each digit. Since our notation
indicates sign value by an alternate sign place system, this simply involves
the dropping or adding of initial and final zeroes:

(= 1)dy oo d, =0d, - d,0;
(— 1)0dy ++--d,0=d, +++- d,;
(= D)dy < o+ d0=0d -+ d,;
(= A0, e dyms dy wosedy B

The negative of a collateral category NN.... is an affinal category
ON.... and vice versa. A category C and its negative (— 1)C together
constitute a negative correlation (+ 1)C.

Where there is no basis of choice, we arbitrarily use the collateral term
of the correlation in this expression. Of course, (— 1)(— 1)C = C. Note
that only the identity element ego 00 is its own negative.

The path of a category will exactly match the path of its negative if
the diagram is folded over along the main diagonal, the two paths of the
correlation together forming an ink blot pattern.

The reciprocal C-' of a category C is its right-to-left inverse, the ex-

pression read backwards:

(1) Note that coodinate pairs HeyDzy and LzyDzxy also specify single squares,
while HzxySxy and LzySzy also specifly correlations.
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L3 n

Ody vvv d,0°1 = 0d, + - .. d,0:
dl ----dnﬂ"lz()d“--ndl:
Ody «+erdyt=d, ... d0.

3{1.....1';’-1: ....Jl;

A reciprocal correlation C*' may be written with either term of the correla-
tion as C, since (C-!)-1=C. When the choice is arbitrary, we write the
term which is higher when read as a decimal fraction “C”,

In our alternate sign place system, turning an expression head for tail
automatically inverts all signs. With the exception that the necessary in-
version of lineal links is not automatic, the same simple method of finding
the reciprocal applies in the notations of Radcliffe-Brown and Romney.
The operation is considerably more cumbersome in the language-based con-
ventional notation, despite the fact that the principle is simply that of
retracing one’s steps.

All categories Dhl = 0, on the main diagonal, find their reciprocals in
their own squares, with all categories of symmetrical form £¢ = Y,u_g+1 Such
as 22 or 1331 being their own reciprocals. All other categories, of course,
have reciprocals in the correlated square across the main diagonal.

Note that the reciprocal of a lineal category Sxzy — Hxy is the same
as its negative.

Limiting consideration to categories of three digits or less, exclusive of
ego, we find the following generalized reciprocal correlations:

Lineal: 10#1 = 10 and 01;
Collateral: 11#1 = 11;
Affinal: 0110** = 0110;

Non-lineal, Nd = 3: 1110*! = 1110 and 0111.

Most work on kinship restricts the last correlation to 1110%t, spouses of
collaterals and collaterals of spouse. Without any empirical claim as to
the sociological boundedness of this correlation, we find it useful to apply
the concept unrestrictedly in mathematical operations on categories.

The Negative reciprocal (— 1)C-1 of a category C has the order of
digits reversed without inversion of signs:
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(=Ddy+veedt=0d,-..-d0;
(= 1)0d, «ove d0V =d, .o dy;
{— l)dl""dﬂo-l=dn""dl0:
(= 1)0dy evse da=d = 0dy 1+ 2+ dy.

Two zeros are added or dropped, single zeros keep their places.

Since negation cancels the change of signs in the reciprocal, we see that
— 1(=1)(CY)-t = C. Actually, as this shows, taking the reciprocal is a
complex operation combining inversion of the signs of all digits and reversal
of their order, while taking the negative reciprocal is just the second of
these simple operations.

However, since the reciprocal is of greater sociological significance and
facilitates computation in our system, we prefer to consider it a simple
operation, providing for it to be simply indicated and simply performed, at
the slight cost of the selfcancelling negation in the artificially complex
concept of negative reciprocity.

CATEGORY ADDITION

The operation of category addition may be approached through a re-
consideration of translation from the traditional or Romney notations into
numerical category notation, which involves one of its sub-operations, con-
catenation.

Given a compound term consisting of a sequence of sex-generalized
primary relationships, we first substitute on a one-to-one basis from a lexicon
of four entries in the form of rewrite rules, where “f— g” is read “f is
rewritten as g”:

+ a, Parent — 10;
— a, Child —01;
0 a, Sibling — 11;
= a, Spouse — 0110,

After substitution, the following syntactic rewrite rules are applied to
remove inside zeros (the first rule, with null effect, is included only to show
all posible combinations):
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Yy — 2Y,

00y — zy;

y0y' — ¥ = Syy’;
0z’ — p!! = Szx'.

In other words, two digits separated by no zeros or two are written together,
and two digits separated by a single zero are summed. These rules follow
naturally from the alternate singn principle, no zeros or two between digits
indicating that they have opposite signs, a single zero that they have the
same sign,

Note that cancellation of double zero may be considered a special case
of summing across zero, with summing of the first digit and second zero
across the first zero and of the first zero and second digit across the second
zero. The same interpretation may be given to concatenation of the identity
element 00 to another category or, trivially, to itself, although this is more
conveniently thought of simply as a null operation.

We illustrate with a concatenation table for the primary categories, in
which cancellation is shown by slashes through zeros and summing by

underlining:

10 01 11 0110
10 1010 — 20 1001 — 11* 1011 — 21 100110 — 1110%*
01 o110* 0101 — 02 Dl11ee 010110 — 0210
11 1110%* 1101 — 12 11115 110110 — 1210

0110 0171010 — 0120 0110P1 — 0111* 011011 — 0121 0110P110 — 011110**

Categories marked with a single asterisk are, of course, themselves
members of the set of primary relatives. As mentioned before, “parent’s
child”, available in the conventional notation to represent half-sibling, is
equated with full sibling in ours as so far presented. “Child’s parent” can
be tautological with “spouse”,

Double asterisks mark step-categories. Note the redundancy in the
fully exploited conventional system that both a parent’s spouse other than
the other parent and a sibling’s parent other than ego’s must be a step-
parent, and both a spouse’s child other than ego’s and a child’s sibling other
than ego’s child must be a step-child.
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The remaining eight categories are the numerical category translations
of the secondary or two-term expressions normally occurring in the traditional
notation. Note that these are just the one digit categories with Szy = 2 and
the two digit categories with Szy = 3, so that Szy — Nd + 1 = secondary.
The formula does not apply to step-categories, any more than the order
system does.

This process may be iterated to translate a conventional kin expression
of any length, or a natural-language kin expression of any length. To take
one example of each, the two happenning to be synonymous:

PaSbChSpPaSbSp:
101701011010110110 — 233210;

Uncle/Aunt’s Child-in-law’s Uncle/Aunt by marriage:
2102702210 — 233210.

This equivalence demonstrates that concatenation is associative, that is, that
the order of concatenation is irrelevant. It is not commutative:
1002 — 12 = 0210,

If we signify optional concatenation by parenthesization, partially general-
ized categories may be indicated with more flexibility than by 72 = n alone.
For example:

01(10) = 01 or 0110;

(10)00(01) = 00 or 10 or 01 or 11 = primary consanguineal;

00(01)(10) = 00 or 01 or 0110 = ego’s family of procreation;

10(11) =10 or 21;

0110(10) = 0110 or 0120 = spouse’s consanguineal other than ego’s,
and other than children by another spouse,

Concatenation of a sequence of categories yields a unique category which
is a full interpretation only under the constraint that the sequence was
intended as a minimal representation of a unique category, as in kinship
notation. Otherwise, a full interpretation must be a set of categories, with
a set of one merely the limiting case. Consider “parent’s child”, which
identifies “sibling” only by notational convention, normally covering ego as
well,
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Category addition, symbolized by the addition sign, generates the full
set of valid solutions of a scquence of categories by combining the sub-
operation of concatenation with the sub-operation of reduction. Addition is
a binary operation, proceeding cumulatively from the left in the case of
three or more summands, on an egocentric category E to the left and an
altercentric category A to the right, generating a set of displaced egocentric
categories El:

E+A=E=E;=...=E',,

where Ns > 1 is the number of solutions. Concatenation alone produces E!.
This will be the unique solution if the last digit of E and the first digit of
A are of the same sign, that is, if the concatenation involved summing
across zero. If the innermost digits are opposite signs, further solutions
are generated by successive reductions each followed by concatenation, a
reduction consisting of the simultaneous subtraction of one from both inner-
most digits. Reduction terminates when one of the innermost digits becomes
a zero and is summed across, or when no digits remain. FEach stage of
reduction R, may be represented by

Ri= vid=tdd=1.: = E,,

where it is understood that either both innermost digits are in the innermost
places or both flank zeros in the innermost places.

Thus, to generate the two valid solutions of the example given above,
“parent’s child”, one reduction is needed:

10 + 01 — 11 (E);
R, =00 40000 (ED;

A grandparent’s grandchild may be a first cousin, a sibling, or ego, so
the addition blocks after two reductions:

20 + 02 — 22 (E));
R, =104 01— 11 (E!);
R, =00 + 00 — 00 (E}).
An uncle/aunt’s sibling may be a step-uncle/aunt, another uncle/aunt, or
a parent:
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21 + 11 — 2111 (E));
R, =20+ 01— 21 (ED;
Ry=10 +00—10 (E!).

All spouses of grandchildren are the same to ego, so no reduction is
possible:

02 + 0110 — 0310 (E!).

An uncle/aunt’s great-nephew /niece may be a step-relation, a first cousin
once removed (downwards), a nephew/niece, or a child:

21 + 13 - 2113 (E);
R, =20403-23 (E);
Ry=10+0212 (E):
Ry =00 + 0101 (E).

We may, of course, if we choose, disregard solutions which are step-
categories, or those beyond a certain number of digits, or any others of no
immediate interest.”> We must, however, discard as invalid all solutions
concatenated from reductions which have removed both innermost pairs,
that is, which have produced self-cacelling double zeros on both sides of
the addition sign. The necessity for this may be seen in the simplest case,
spouse’s spouse:

0110 + 0110 — 011110 (E!);
R, =01 + 10 — 0110;
R, =00 + 00— 00 (E}).

A spouse’s spouse may be a co-spouse or ego, but cannot be another spouse.
Note that ego 00 is not a self-cancelling double zero, and that the pair of
the one-pair category from which it has been reduced has not been dropped.
00 is a category, while 0100 can only be the category 01. 00 is dropped,
in effect, in concatenation, but not in reduction. Note also that subsequent
reductions may give valid solutions.

(1) When only the solutions nearer ego are wanted, or only the fully reduced
solution, reduction may be speeded up cancelling symmetrical sequences from
the addition sign outwards and by adding the difference of unequal innermost
digits to the next place on the side of the smaller,
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Hereafter we simplify the representation of addition by reverting to the
form E+ A=E{=E/= ... =E,,. For example, addition of sibling’s
spouse’s parnet and grandchild:

1220 4+ 02 = 122.2 = 121.1 = 12,

where the period is simply a temporary juncture marker to facilitate reduc-
tion. The equivalences are between E + A4 on the one hand and each E;
on the other. E] and E} are equivalent only in the sense that both contain
instances of E + A, and are not, for instance, substitutable for one another
elsewhere.

Note that addition is not commutative. A sibling’s spouse is not a
spouse’s sibling:

I1 4+ 0110 = 1210 % 0110 + 11 = 0121.

Addition is, however, associative. Consider the three-term addition
“child’s parent’s sibling”. We normally proceed from the left, first adding
child and parent:

01 + 10 = 01.10 = 0.0;
then adding the remaining summand to each solution:

0110 + 11 = 0121;
00 + 11 =11.

We may also, though, add the second and third terms first, temporarily
taking the second term as a (shifted) egocentric category:

10 + 11 = 21;

If this smaller innermost digit happens to occupy the outermost placcd, it is perhap-s
simplest to consider that the difference is summed with the inner zero of an added
outer pair of zeros, all other pairs cancelling themselves out. For example:

42324-2322=+-=4.2=20. =2.0 = 20;
or
342343251 =++=34.51=+=30.11 = 41.

The second process, of course, includes summing across zero, and thus terminates
reduction. We do not normally indicate the juncture point after it has been
summed across, but do so here and then rewrite to show how the place assign-
ments have been made.
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and then add the result to the first term:
01 + 21 =01.21 =11.
By either method:
01 + 10 4+ 11 =012l =11.
Again, consider “second cousin’s grandfather’s great-grandchild”:

33 + 20 = 33.20 = 32.10 = 31; (E + A))
3320 4+ 03 = 332.3 = 331.2 = 34;
3210 4 03 = 321.3 = 34;
31 4 03 = 34;
or:
204+03=23=12=10.; (4, + Ay)
33 4+ 23 =33.23 = 32.13 = 34,
33 4+ 12 = 33.12 = 34;
33401 =34,

In both cases:
33 4+ 20 4 03 = 3323 = 3312 = 34.

Traffic rules have been given for tracing a path on the category diagram
from ego 00 to an egocentric category E: a numerical category is inter-
preted as a sequence of instructions, each odd, or positive, place z, calling
for a move z, squares to the right, each even, or negative, place y, for a
move y, squares down,

In tracing a path corresponding to an altercentric category A from E
to E’, however, that is, in representing addition of categories, these rules
remain in full force only for the first concatenation, or unreduced addition.
The graphic analog of reduction reverses these rules for the first i squares
of A in the ith reduction, each unit of a positive place calling for a move
one square to the left, each unit of a negative place for a move one square
up. Reduction continues only as far as these re-readings of 4 double back
along the path of E towards ego 00.

Since 1 is subtracted from both sides in each reduction, the absolute
sum of each E] will be 2 less than that of its predecessor. Since the
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subtraction is from digits of opposite sign, the relative difference will be
unchanged. This means that the set of solutions E; will occupy a diagonal
parallel to the main diagonal, each solution one diagonal square closer to
the axes, that is, one square up and one to the left, or towards ego. If the
first solution is in the square SsSy, the ith reduction will be in the square
S;-¢S,-¢. In the case of the addition of reciprocals, Sz = Sy = i: the first
solution will be on the main diagonal at SzSy, the last at ego 00.

Step-categories may be avoided in addition on the category diagram by
abandoning A4 paths which revert to movement away from €go one square
short of a transition square in the retraced E path.

TRANSPOSITIONS OF CATEGORY ADDITION

Addition of categories generates the set of categories represented by the
unknown in equations of the form a + b = z, such as "Who are my uncle’s
first cousins to me?” But we would also like to be able to determine the
values of the unknowns satisfying equations of the forms a + z = b and
@ + a=b, such as “What are my first cousins to my uncle?” and “Whose
uncle is my first cousin?”

We found our rules for transposition of category additions anticipated
in group theory, and so will first point out in what respects the set of all
numerical kinship categories constitutes a group as that term is understood
in abstract algebra.

A group is a set G and a binary operation () on G such that the JSollowing
axioms are satisfied.

Axiom 1 (Associativity). For any elements r, s, t of G,

r@E@)=(r@s)®n
Axiom 2 (Identity). There is a unique element I in G such that, for every
element r of G,
rI=1® r=r.
Axiom 3 (Inverses). For any element r of G, there exists a unique element
r=t of G such that
r@irt=r @r=1
(Grossman and Magnus 1964; 13)
A binary operation on a set is a correspondence that assigns to each ordered
pair of element of the set a uniquely determined element of the set. [Italics in
text] (Grossman and Magnus 1964: 4)
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We have seen that addition of categories is associative, We have also
seen that it has an identity element, ego 00. But, while addition of elements
of the set of categories produces other elements of the set, it does not
qualify as a binary operation under the definition quoted because it assigns
not a unique element but a set of elements to each ordered pair of elements.
Moreover, Axiom 3 holds only for fully reduced addition, in which concate-
nation takes place only after the last possible reduction. For example:

21 + 12 =21.12=22 = 1.1 = 0.0.

You are not your uncle’s only nephew. But, in terms of fully reduced
addition:

21+12= LR =00;

that is, addition of reciprocals reduces to ego. This constraint on addition
also resolves the difficulty in meeting the group theory definition of binary
operation, since there is now a unique solution for each addition, We may
say, then, that the set of all categories constitutes a group under the binary
operation of fully reduced addition,

Note, in connection with fully reduced addition, that the simple con-
catenation of primitive terms that forms the basis of all kinship notations,
including ours, may be termed wunreduced addition.
~ As we have seen, addition is a directed operation, even fully reduced
addition, so the set of categories is not a commutative, or Abelian, group,
There are, however, unobvious cases of partial commutativity, such as

21 + 11 =2L.11 =21;
11 +21=1121 =21.

The brothers of some of your uncles are the uncles of some of your brothers,
the only exceptions, in fact, involving half-uncles or half-brothers. But
such cases must be considered accidental.

The transposition rules for group theory equations, with the binary opera-
tion arbitrarily represented in terms of “group multiplication”, are as follows:
To "solve” ax=b, multiply on the left by a=! to find z=a"'b; to "solve."

ra=>b, multiply on the right by a~! to find 2=ba"'. [Italics in text]
(Grossman and Magnus 1964: 36)
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Since the binary operation on categories is obviously closer to addition
than to multiplication, it would be more natural to employ the additive
inverse, the negative, rather than the multiplicative inverse, the reciprocal,
Precedent for treating head-to-tail inversion as negation may be found in
vector theory, where the negative of a vector is one of equal magnitude
but opposite direction. We prefer the mathematically inappropriate term
“reciprocal” because of its currency in anthropological work, and the nega-
tive unit exponeni because the minus sign would invite confusion with
negative places and with scalar multiplication by — 1, There is no such
danger in the use of the plus sign for addition, since it accomodates itself
naturally to our alternate sign convension. It would be possible to consider
the binary operation on categories to be multiplication if the digits were
defined as the exponents of sex variables rather than, in effect, as their
coefficients,. Romney and D’Andrade, for example, indicate “expansions”
by superscripts. This would seem, however, to lead to unnecessary com-
plication, either notational, if the redundant variables are retained, or
conceptual, if they are suppressed.

We thus prefer to state these transposition rules in the following hybrid
form, with apologies to any mathematicians they may offend:

If a+z =25 then al+ b=z
If x+a=b, then b+atl=zx.

To rephrase these transposed equations in the terms used for the original

category addition equation:

If E+ A=E';

then E' + A1 =E;

and E-1 + E'=A.
For mnemonic purposes, it is useful to note that the unknown in a transposed
equation has switched placed with the unknown of the original, while the
remaining term, the one that is literally not displaced, has been inverted.
Note also that the equation for E simply states the obvious fact that the
inverse of a relation is its reciprocal.

Once the indicated reciprocation has been made in a transposed equation,
it constitutes a perfectly valid new “original” equation and may be relabelled
accordingly. This holds equally in the less obvious case of the equation for A.

Consider, however, that E’ in the original equation actually represents
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a set of solutions E!, each of which must be substituted in the transposed
equations, With superscripts indicating the value of E’ substituted, we thus
have:

If E+4+ A=E;

then E; 4 A" = Ei;

and E-! + E} = A,.
The original values of E and A will be the intersections of the set E! and
A} respectively,

A more practical method for evaluating E and A4 through transposition

is to employ fully reduced addition throughout:
If E+ A= ... = E,;
then Ep + A1 = ... = EF::
and Ed 4 Elmovi = AT
where E¥; and Ay and the original E and A.

In the following example, the original values of E and A are underlined
wherever they appear, and the equations using E),, the shortcut transposi-
tions solving for E and A4, are marked with asterisks:

E+ A= E;:
3_1 + E =3112=32=2.1=1.0;
El 4+ A1 = E}:
3112 + 21 = 3112.21 = 3111.11 = 311.1 = 31;
32421 = 3221 =3L11 = 3.1 =2.0;
21 4+ 21 = 21.21 = 31;
*10 +21=31;
E-! + E| = Ai:
13 4+ 3112 =133112 = 122112 = 11,1112 = 1.112 = 12;
13 4 32 = 13.32 = 1222 = 11.12 = 1.2; b
13 + 21 =13.2]1 = 12.11 = _13;
*13 4+ 10 = 13.10 = E

It would be even more tedious to demonstrate the fact that resubstitution
of any value Ej or 4j in the original formula will produce the appropriate
value E; through fully reduced addition, or the fact that resubstitution of
any set E' or A’ will do the same in terms of intersection. Resubstitution
of equivalents may also be made in the transposed equations,



APPENDIX TWO

Mathematical Analysis of Genealogical Spaces

S.H. Gourn and PIN-nstuNG Liu

INTRODUCTION

Genealogical theory may be illustrated by two basic problems.

First: Under what circumstances does one person address two others by the
same kinship term?

This first problem is particularly interesting in segmented societies, i.e.
societies partitioned into segments such that kinship terms depend almost
solely on the respective segments to which the individual persons belong.
For example, a Murngin tribesman in northern Australia will address his
father and his greatgrandson by the same term bapa, but his grandfather
and his son by the distinct terms marikmo and gatu, an apparently bizarre
practice that receives its natural explanation in the theory of segments
developed below.

Second Problem ii: How are kinship terms combined?

This question takes three (essentially equivalent) forms; e.g. for the

relations “grandparent”, “grandchild” and “parent”:

iia) My grandparent’t grandchild refers to me as what?
iib) I refer to what relative of my grandparent as parent?
iic) As what do I refer to my grandparent’s parent?

Here the interest lies not only in calculating the answers themselves,
but also in predicting how many of them there will be: namely, three for
lia (self, sibling and cousin), two for iib (child and child-in-law), and two
for iic (great grandparent).

To solve these problems rapidly and systematically, we develop a concise
numerical notation, first for “non-sexdistinguishing” societies, then for socie-
ties with a sex-distinction, and finally for segmented societies. Our method
is based on the fact that all relations can be expressed in “child-parent”

293
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terms; e.g. “ancestor” = PP...P (parent’s parent’s...parent), “sibling” =
PC (parent’s child), “cousin” = PPCC (grandparent’s grandchild).

1. NON-SEXDISTINGUISHING SPACES

1.1 Definition and notation

A space consists of a basic set B of persons a, b, ¢, ---, together with
one or more siructures on B, where by a structure we mean a set of subsets
of B; e.g. a family structure consists of a set of families, a husband-wife
structure consists of a set of married pairs.

A relation 1s a structure whose subsets are pairs.

By the word “pair” we mean an “ordered pair”, i.e. a pair with a first
element and a second, so that e.g. the “husband-wife” relation is different
from the “wife-husband”; and for brevity we shall often refer to the pair
only by its second element; e.g. by the “wife-relation” we mean the
“husband-wife” relation. In non-mathematical speech a relation (more
precisely, a binary relation) is defined in some such way as “a quality
which can be predicated only of a pair of entities”. The mathematical
definition—which like all definitions in mathematics is in terms of “sets of
sets”—avoids vagueness by abstracting from the non-mathematical relation
its one essential feature, namely the set of pairs by which it is exemplified.

The set {(b, a), (d, ¢)---} formed by inverting each of the pairs in
P = {(a b), (¢, d).--} is called the inverse of P, and is denoted by P-! or,
if P is a child-parent relation (see below), by C.

By the product Q - R of two relations O, R we mean the relation con-
sisting of the set of pairs (a, ¢) for which there exists a b such that (a, b)
is in Q and (b, ¢) isin R. For example, if Q is “father” and R is “brother”,
the product Q - R contains all pairs (a, ¢) such that some 5 is father to a
and brother to ¢; in other words, the statement “(a, ¢) is in Q « R” means
that ¢ is uncle to a@. It is clear that (Q - R)-1 = R-1 Q-1,

We denote PP by P%, P.P.P=P.PP by P, ..., C.C by Ct = (P-1)? =
P-%..., and the identity (or self) relation consisting of all pairs of the form
(a, a), (b, b), -+ by I=P0«CoO=P0uPO=C0uC9 All these relations
are called powers of P, or of C.
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A relation P is called stratifying if no two powers of P have a pair in
common. Clearly, if P is stratifying, then so also is its inverse C. The
powers of P or of C determine distinct strata, called generations, i.e. no
person is his own ancestor, etc,

A genealogical space G is a space such that at least one of its structures
1s a stratifying relation P, called its child-parent relation. Since all state-
ments about the space G are based solely on the stratifying property of the
relation P, and since C is also stratifying, any true statement about G will
be changed into a true statement, called the dual of the original statement,
if C is substituted for P, and P for C. For example, the true statement
“sibling (PC) is symmetric” (i.e. is its own inverse; namely, if ¢ is sibling
to b, then b is sibling to a) becomes the dual (and therefore likewise true)
statement “spouse (CP) is symmetric.” We shall find below that this
principle of duality holds not only for child and parent, but also for male
and female.

If P is the only structure on G, then G is said to be non-sexdistinguish-
ing. Genealogical spaces with two structures, parentage and sex, are con-
sidered in the next section.

In giving examples for non-sexdistinguishing spaces it is convenient to
write “uncle” for “uncle-or-aunt”, and “nephew”for “nephew-or-niece”.

1.2 Graphs. Inverse and dual paths

The various relations can be helpfully visualized as graphs, in which the
individual persons are represented by dots, with each child lower on the page
than his parent, and each child-parent pair joined by a line-segment, Every
possible relation between two persons a, and a, can then be unambiguously
defined by a path = from a, to a, (sec the sketches); i.e. by a sequence
of distinct elements (ay, @, ---, @,) such that each of the successive pairs
(ayp, @), (@, a;)---(a@,.;, a,) is either a child-parent pair P or else a
parent-child pair C,

The sequence of P’s and C’s in the path dual to = is obtained by sub-
stituting P for C, and C for P, whereas the sequence in the inverse path
m"l = (@, @y, -+, @) is obtained by first inverting the order of the P’s
and C’s in = and then making the substitution of P for C, and C for P. In
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the sketches, each path r is drawn on the same sketch as its inverse, and
dual sketches are placed side by side.

The path = is said to be of length n, or to have n steps. If all the
pairs (ay, @), (@, a), -+ are in P (resp, in C), the path is called an
ascent (resp. a descent). If p of the steps are in P and the other g = n — p
are in C, the path = is of height h=p — g = n — 2g (positive, negative or
zero) and a, is h generations above a,.

It is important to note that these sketches do not represent an entire
relation, but only one pair in it; the sketch labeled “uncle” (more precisely,
nephew-uncle) represents only one nephew, often called ego but here called
ag, and only one of his uncles, here called a,, The entire nephew-uncle
relation would be represented by an unintelligible maze of lines running
out from the various points.

On the other hand, mathematical discussion of a relation becomes much
simpler and more intelligible if it is based on the entire relation, not just
on the relatives of one person.

1.3 Kinship types

Any sequence Q of P's and C’s, say Q= CPPCCP (spouse’s sibling’s
spouse), will define a set of paths, joining each point @, to various other
points a, We shall say that Q is the kinship type denoting the relation
that consists of all such pairs (a,, a,), and for convenience we shall some-
times say that (ay, a,) is in Q, with the meaning that (a, a,) is in the
relation denoted by Q. Similarly, we shall speak of the product 0, - Q, of
two kinship types, meaning the product of the corresponding relations. To
say that some pair (a, b) is in Q is clearly equivalent to saying that (b, a)
is in Q-1,

Some of these kinship types will have corresponding kinspip “terms” in
English: e.g. P*C = uncle, PC® = third-cousin-twice-removed; but most of
them, e. g. P7C°PC®, will not correspond to any familiar English name.

1.4 Reduced forms

The product A . B of two kinship terms 4 and B may include one kin-
ship term, or more than one. For example,
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P+ PC (parent’s sibling) includes only PPC (uncle)
PP.C (grandparent’s child) includes PPC, P (uncle, parent)
P« PCC (parent’s nephew) includes only PPCC (cousin)
PP . CC (grandparent’s grandchild) includes PPCC, PC, I (cousin, sibling,
self)
PPC . C (uncle’s child) includes only PPCC (cousin),
and similarly for the dual products C. CP, CC- P,.-.CCP . P,

Multiple inclusions occur only when the dot appears between a P and a
C, in either order, and are always due to the fact that PC (sibling) and
CP (spouse) are defined by pairs (ay ay), (ay, a;) with distinct a, and a,,
whereas the products P.C and C.P (parent’s child and child’s parent),
also include the possibility that a, = a,, in which case P.C=C.P=1
Then in a product like PP.CC (grandparent’s grandchild), whenever the
inner product P. C represents J, this inner P . C can be deleted to obtain
a subset of the pairs denoted by PP. CC. In other words, PP.CC can be
reduced to P . C, and this first reduced form P.C (since again the dot
occurs between a P and @ C) can be further reduced to I

The general rule is: a product K« L of two kinship terms K and L is
reducible if the last step in K and the first step in L are dual to each other;
i.e., if one of them is P and the other C; and the first reduced form thus
obtained will be reducible on the same condition, and so on, down to a
completely reduced form in which the inner terms, one on each side of the
dot, are either both P or else also both C.

An equivalent statement is: the product X . L will be g times reducible
if the first g steps in K-! are identical with the first ¢ steps in L.

Then the various kinship terms included in K . L will be obtained by
omitting the dot in the unreduced product K . L and in each of its reduced
forms.

1.5 Solutions of the second basic problem

If we regard M, L and K respectively as unknowns X, Y, Z, then for
each of the three parts a), b), ¢) of the second basic problem we may write
Ic K. L.M where the the symbol ¢ means “is included by”; e.g. in part
iia, K takes me to my grandparent, L to my grandparent’s grandchild, and
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X back to myself. Then Ic K. L.M implies X c L' K-1, Y c K-1 M-1,
Z < M-* L, so that in the particular case K = PP, K-1 = CC, L = CC,
Lt =PP, M =P, M-l =C we have

Xc Lt Kt= PP.CC, with reduced forms P.C, I,
YC Kt M!'=CC.C, with no reduced form,
Zo M. -1 = (C. PP, with the reduced form P.

Omiltting the dots gives:

i) PPCC (cousin), PC = sibling, I = self,
ii) CCC (great grandchild),
iii) CPP (parent-in-law), P (parent), as stated in the Introduction.

1.6 The numerical notation

For a kinship type like P*C* (cousin), or CP*C*P (spouse’s sibling’s
spouse), it is convenient to write merely the sequence of exponents P*C? —
22, CP*C*P = 012210 = P°CP:C*PC’, where the initial zero is necessary to
show that the sequence begins with a €, and the final zero is convenient
(for the reasons given just below) to show that the sequence ends with a P,

In this new notation, which means that the length of every kinship
type is now even, the familiar English names will appear as follows:

10 = P = parent,
ml = P™ = mth ancestor,
11 = PC = sibling,
2] = P:C = uncle,
0210 = C*P = child-in-law,
22 = P:C* == cousin,
m(m 4 k) = P"C™+* = mth cousin k-times-removed,
0l =C= Chil(l,
Om = C™ = mth descendant,
0110 = CP = spouse,
12 = PC*® = nephew,
0120 = CP? = parent-in-law,
0220 = C*P* = cograndparent,
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Om(m + k)0 = C"P*+* = (m + k)th ancestor of mth descendant through
distinct intermediate relatives (no common name in
English).

The convention of suffixing a zero to a sequence ending in a P is con-
venient for at least three reasons:

i) the inverse of a kinship type is now obtained by merely inverting
the order of its constituent P’s and C’s. Thus 21 = P*C = uncle is inverse
to 12 = PC* = nephew; 0110 = spouse is self-inverse, etc;

ii) the dual is obtained by adding or canceling an initial or final zero;
thus 0220 = C®P? = cograndparent is dual to 22 = P2C* = cousin;

iii) the reduced forms of a product A4.B are quickly obtained, as
follows:

a) A . B will be reducible if and only if the last term in A4 and the
first term in B are both non-zero. (If exactly one of them is zero, the
product is already in completely reduced form. If both are zero, the double
zero is canceled and reduction proceeds in the usual way). The number of
reduced forms will be equal to the smaller of these non-zero terms (if they
are equal to each other, the number of reduced forms will be equal to
either of them increased by the smaller of the immediately adjacent terms),
and the successive reduced form will be obtained by subtracting unity from
each of these non-zero terms until one of them becomes equal to zero. (If
they become equal to zero simultaneously, the reduction continues on the
next adjacent terms.)

The kinship term corresponding to an incompletely reduced form is
obtained by omitting the dot, and the term corresponding to the completely
reduced form is obtained by “adding across the internal zero” and omitting
the zero and the dot. Thus 22 .12 reduces to 21.02 =23 (cousin’s
nephew=22.12 reduces to first-cousin-once-removed = 23). Let us illustrate
from Problem i in the Introduction, where we have: K = 20, K-!= 02,
L=02, L-'=20, M= 10, M-* = 01, which implies

XcL1.K1=20.02=2.2, with the reduced forms 1.1 and [:
Yc K-t. M-t1=02.01 with no reduced form
Zc M-t. L-t =01 .20, with the reduced form 00 . 10,
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so that, as stated in the Introduction, X = 22 (cousin), 11 (sibling) or I
(self);

¥ =03 (where 3 =2 + 1 by addition across the single zero and sub-
sequent omission of the zero and the dot) = great-grandchild,
Z = 0120 (parent-in-law), or 10 (parent).

As a final example, consider “cousin’s cousin”. Here X — 22 . 22, with
reduced forms 21 - 12, 2002 = 10. 01, I, so that X — 2222 (no one-word

name in English), 2112 (again no one-word name), 22 (cousin), 11 (sibling),
self.

2. SEX-DISTINGUISHING SPACES
2.1 Sex-distinction

Up to now, our space has had only one structure, the child-parent
relation. 'We now consider genealogical spaces with a second structure as
well, namely a sex-distinction.

A k-sex-distinction on a basic set B is a structure S consisting of K = 2
exclusive and exhaustive subsets of B, called respectively the S;-sex, the
Sg-seX, ««+ the S,-sex. If K=2, the S;-sex will be called male, and the
Sg-sex female. For K >2, the word “sex” is used in a generalized sense.
For example, in the terminology of certain Christian churches we may take
K =4 in view of the fact that, in addition to his two biological parents,
a child is given two “god-parents”. A notation like oS¢ will mean that S,
is in the Si-sex. For k=2, we write ¢’ to mean that ' is female, and
a™ to mean that a™ is male,

In spaces with one sex (i.&. the non-sexdistinguishing spaces of Chapter
One) the child-parent relation was required to be stratifying with respect
to that one sex. Similarly, in spaces with k sexes (k = 2) the child-parent
relation is required to be stratifying with respect to each sex; i.e. If we
define an S;-ascent (resp. an S.-descent) as an ascent (resp. descent) a,,
ay’, ay'y -+, @y’ in which all the elements, except possibly the first, are in
S;, and define the nth positive S,-power (resp. nth negative power) of P
(resp. of C) in § as the set of pairs (a, a,) joined by an S;-ascent (resp.



302 FOUNDATIONS OF KINSHIP MATHEMATICS

by an S,-descent) of length », then no two S;-powers of P have a pair in
common.

Consequently, we can define a difference in generations along any given
sex. But generations across sex cannot be satisfactorily defined. For
example, in some societies (see Chapter Three) uncle-niece marriages are
the general rule, which means that the child of such a marriage has the
same person for his grandfather along the male ascent and for his great-
grand-father along a mixed ascent through his mother.

Since the definition of a sex-distinction is symmetric with respect to
male and female, the principle of male-female duality will hold, i.e. any
true statement will be transformed into a true statement by interchange of
the terms “male” and “female” (compare the child-parent duality in Section
One). This principle will be particularly valuable for the segmented (m, n)-
spaces in Section Three (spaces with m-patrilines and r-matrilines, since our
results for spaces with m:__?n can be immediately transferred to spaces
with n > m.

2.2 Numerical notation

In sex-distinguishing spaces (not including those in which kinship terms
depend on the sex of the speaker; to be treated later) there will be two
terms for “parent”, i.e. “father” = F and “mother” = M, and similarly for
“sibling” (brother = B, Sister = Z) and child (son = S, daughter = D) etc.,
and for “cousin” there will be sixteen: MMDD, MMDS, ..., FFS88: so that
the notation of Chapter One 10 = darent, 11 = sibling etc. is no longer
sufficient. In such a space we shall write

1,0 = mother, 1,0 = father, 01, = daughter, 01, = son,
20200 = MMDD,  242); = MMDS, ...,  2,,2,, = FFSS,

and for 34 = second-cousin-once-removed, e.g. 34,400 = FMFSDDS, where
it is to be noted that the length of each subscript is given by the number
to which the subscript is attached; e.g. 3 has a subscript of length three,
4 of length four, etc. In order to include those kinship terminologies (as
e.g. in the Fox branch of the Algonquin Indians) which distinguish the sex
of the speaker, it will only be necessary to prefix a zero or a one to the
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subscript, e. g. 15,0 would mean "mother of a daughter” etc., and to make
corresponding changes in the rules for reduction of a product given below.

These subscripts may be shortened, at the cost of perspicuity, by con-
sidering them as numbers in scale two, and then converting them to scale
ten. E.g. 0101 =0.:28 +1.28 +0.2 4 1 =35, so that second-cousin-once-
removed = 3,,,4y;, = MFFDSDS becomes 3%4%, with superscripts to indicate
the new notation.

In many kinship terminologies the sex of several of the persons in the
chain will be immaterial; e. g. in English “granpmother” stands equally well
for MM and FM. Thus, using 2 to mean “of either sex” we may write

grandmother = 2,,0,
and now the notation may be shortened by using scale-three: i. e.
grandmother = 28,

where 6 = 2.3 + 0 is the scale-ten equivalent of 20 in scale-three.

This use of subscripts can be generalized in an obvious way to a space
with k sexes, in which we may wish to give information about the various
sexes to which a given kinship term allows given persons to belong.

2.3 Reduction

The kinship terms resulting from the product 4 . B of two given kinship
terms A4 and B will now be found as follows:

1) for addition across a single internal zero, the subscripts are jux-
taposed (concatenated); e.g. if 4 = mother’s father = 2,0 and B = mother
= 1,0, we write 2,0.1,0, add across the internal zero, juxtapose the
subscripts and omit the dot and the internal zero, to obtain 30100 = MFM,

2) reduction of a product A4, ., B, ,, can take place only if i=k
(if the second-to-last subscript numeral i on A and the first subscript
numeral k on B are either both zero or both one) in which case j and %

are deleted (where k is the last numeral on A).

Thus 2y, - 1, can be reduced to 1,0 (my MFD can be either my aunt
or my mother), but 2, -1, can not be reduced (my MFS can only be my
uncle),
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2.4 Cousins

The “cousin”-relation = 22 (= a,, a,, a3, a3, a,) will occur frequently
in the description of segmented societies of the next chapter. We shall
find that of the 32 possibilities only the sex of a, a,, and a, will be
important. Writing ~ (resp. +) to mean “of the same sex” (res. “not of
the same sex”) we have the four kinds of cousinship:

parallel-parallel if a, ~ a, a; ~ ay,

cross-parallel if a, + ay, a, ~ ay,
parallel-cross if ay ~ ay, a; + ay,
Cro8s-Ccross if a, + a, a, + ag;

the usual terms “patrilateral cross-cousin” for “parallel-cross” and “matri-
lateral cross-cousin” for “cross-cross” are unfortunate, since they give pre-
ferential treatment to a male-speaker and thus destroy sex-duality.

2.5 Patrilineage and matrilineage

An S;-line o; is a set of elements, at least one of which is in S,, such
that

i) if a is in oy, then ¢, includes every element in every S;-ascent and
every S,-descent from a;

i) o, i minimal; i.e. omission of any set of elements from ¢, would
destroy property i).

For k = 2, an S,-line (resp. S.-line) is called a patrilineage (resp. matri-
lineage). 1t is obvious that no two lines of the same sex can intersect
without coinciding completely.

3. SEGMENTED SPACES
3.1 Definitions

A space with m patrilineages and n matrilineages is called an (m, n)-
space. The intersection of a patrilineage and a matrilineage is a segment.
An m, n-space in which every patrilineage has a non-empty intersection with
every matrilineage is called a (marriage-) alliance, which therefore has mn
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segments. In view of male-female duality, we may assume m>n From
now on, we shall use the word “space” to mean “alliance”.

A sociological K-relative, where K is a kihship term, is defined as any
person who is in the same segment and of the same sex as the correspond-
ing biological K-relative; e.g. a “sibling” of g, is any person in the same
segment as a biological sibling of a,.

A marriage-rule is a pair of segments 3;,, 3, such that the no male
in 3, can have a child in common with a female in 3,.

A segmented space is a space with m > 2 with the marriage rule
(S:, S;) for all i; i.e. no two persens in the same segment have children
in common. In other words, marriage is “cross-patrilineage” and “cross-
matrilineage.” A 1,1 space is said to be trivially segmented.

By this definition a marriage rule is “restrictive” e.g., @, cannot marry
in 3);. For convenience, most of the marriage rules stated below will be
in “prescriptive” form (the form commonly used by the native speakers
themselves); e.g. @ must marry in J},. But any prescriptive rule can be
stated as a set of restrictive rules; i.e. if @, must marry in S,, then a,
cannot marry in Sy, Sy -+, S,

3.2 The (1,1) space

The simplest (set-distinguishing) space is the (1,1) space, in which the
two lines (patri- and matri-) obviously coincide, so that there is only one
segment and therefore no marriage rule. Since other systems prohibit
sibling-marriage, the (1,1) space is sometimes called “sibling-space”. The
system appears to have been practiced, at least in part, by certain noble
families in Europe, and by the family of Cleopatra in Egypt.

3.3 The Kariera (2, 2)-space

The (2,2) and (4,4) spaces are represented by well-known examples,
¢. g the Kariera tribe in the western part of Australia for the (2,2), and
the Murngin tribe in the northern part for the (4, 4).

The Kariera tribe, occupying a territory of about 3500 square miles,
consists of ten hordes (though the exact number appears to be uncertain).
The horde, averaging about 50 individuals, is the basic unit of economic
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and religious organization, centered on one or more waterholes, around
which it leads a hunting and gathering life. The horde is descendent, patri-
lineal, exogamous, patrilocal and virilocal: namely, it claims descent from
a single pair of (perhaps mythical) eponymous ancestors; every parson
belongs permanently to his or her father’s horde (i.e. a horde is a patri-
lineage); marriage is cross-horde; and a male remains permanently in the
territory of his own horde, while a female moves, after marriage, from her
father’s territory to the territory of her husband. The ten hordes are
divided into two moieties (i.e. halves) of five hordes each (though, unlike
many other Australian aborigines, the Kariera tribesmen have no definity
term for “moiety”). Each of the hordes in each moiety is divided into
two parts, which in one of the moieties are called “Banaka” and “Palyeri”,
and in the other “Karimera” and “Burung”. A marriage alliance consists
of two hordes, one from each moiety. The horde from the Banaka-Palyeri
moiety will here be denoted by H,, and from the Karimera-Burung moiety
by H,.

The marriage rules, as stated by the natives, are “Banaka must marry
Burung” and “Palyeri must marry Karimera”. The children of a Banaka-
father (resp. Karimera-father) are in Palyeri (resp. Burung) and conversely;
and therefore, as a result of the marriage rules, the children of a Banaka-
mother (resp. Palyeri-mother) are in Karimera (resp. Burung), and con-
versely,

So in the square array

Banaka Palyeri
(Karimcra Burung

The horizontal rows are the two patrilineages (i.e. hordes) H, and H, and
the two vertical columns are the zeroth matrilineage and the first matri-
lineage., Thus the four parts Banaka, Palyeri, Karimera and Burung are in
fact segments, in the sense defined above. In each of the two hordes, the
even-numbered generations form one segment and the odd-numbered the
other. Denoting the four segments by

00 01
10 11
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where the choice of Banaka for 00 is arbitrary but already determines all
the other symbols (if patrilineages are to be horizontal, and matrilincages
vertical), we see that the marriage rules can be restated as:

00 marries 11, and 0] marries 10,

so that the diagonal lines indicate the two marriage-aggregates, call them M,
and M, i.e. the two sets of segments such that no marriage is cross-aggre-
gate. If we choose an arbitrary generation in Banaka to be called the
zceroth genmeration, then M, contains all the even-numbered generations, and
M, all the odd-numbered, which means that a may marry b if and only if
they are an even number (including zero) of generations apart.

Since a (sociological) brother-sister pair—i.e. a male and a female
from the same segment, say Banaka—marry a (sociological) sister-brother
pair in Palyeri, the system is called “direct-sibling-exchange”. It is also
called “cross-cousin marriage”, in view of the fact that a male m, say in
Banaka, marries his first-cousin any even number of times removed, since
his wife comes from Palyeri and so do his cousins, who are not only his
Cross-cross cousins, i. e.,

mM, mMB and mMBD are in Palyeri,
but also his parallel-cross cousins, i. e.,
mF and mFz are in Banaka, and therefore mFZD is in Palyeri.

On the other hand, neither the Kariera system nor any other system
except the (1,1) can be “parallel-cousin”, neither parallel-parallel nor
cross-parallel, since

mF, mFB, and mFBD are in Banaka, and

mM and mMZ are in Palyeri, so that mMZD is in Banaka, and there-
fore parallel-cousin marriage would involve the forbidden sibling marriage.

3.4 Origin of the (2,2) system

We can see how the system may have arisen in actual practice if we
imagine that at some period in their early history the various hordes of the
Kariera tribe had drawn apart from one another to such an extent that
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their contact was chiefly in the form of warfare, and that for mutual
defense two hordes, H, and H,, found it convenient to make a political
alliance, which they then strengthened by intermarriage, after the fashion of
the royal houses of Europe. Let us suppose that the alliance began with a
mass-marriage of members of the “zeroth generation” Py, Pf, Pr, P/. These
zeroth-round marriages will be of the form

Py« P, P« P}
and their (first generation) children will be
cii» iy (in Palyeri), and efi, ¢f, (in Karimera),

were patrilineage is indicated by the first index and matrilineage by the
second; e.g. c¢ji denotes a male child patrilineally descended from the
eponymous male ancestor of H, and matrilineally descended from the
eponymous ancestress of H,. The first-round marriages of these first-
generation persons will be

Cor > ¢l iy > Clys
with second-generation children
o i (Banaka), and ¢}, ¢/, (Burung),

who in turn may marry, in the second round of marriages, either into their
own generation or, in case some of the progenitors have remained unmarried,
into the zeroth generation; and third generation children may marry either
into their own generation or into the first gencration, and so forth.

3.5 The Murngin (4,4) space; circulating counnubium

An example of a (4,4) space is provided by the Murngin tribe in
northern Australia, which consists of 60 hordes (again the number is not
precisely determined) divided into two moieties of 30 hordes each, which
the natives call the Dua moiety and the Yiritcha moiety. Fach horde is
divided into four parts, which in a Dua-horde are called Buralang, Warmut,
Balang and Karmarung; and in a Yiritcha-horde Bulain, Kaijark, Ngarit,
and Bangardi.

Although direct evidence is incomplete, it appears from observation of
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the use of kinspip terms that the standard marriage alliance consists of four
hordes, two from each moiety, which we may call H,, H, (from the Dua
moiety) and H,, H; (from the Yiritcha). Again using subscripts to distinguish
hordes, we may write the names of the 16 segments in a square array:

Generation G, G, G, G,
Horde
Dua H, Bur, War, Bal, Kar,
Yiritcha H, Ban, Bul, Kai, Nga,
Dua H, Bal, Kar, Bur, War,
Yiritcha H, Kai, Nga, Ban, Bulg

The marriage rules, which are stated by the natives in the form:
“Buralang sends wives to Bulain”, etc., can be expressed in our notation by

(Mg): 00 31 221300, (M,)): 10— 01 — 32 — 23 — 10,
(Mp): 20 > 11 02— 33 20,  (My): 30 — 21 — 12 — 03 — 30,

so that there are four marriage-aggregates.

All members of a given horde come from the same, perhaps by now
forgotten, eponymous male ancestor and all members of the same segment
share the same eponymous ancestress as well. So if we regard sociological
kinship terms, not as expressions of biological relationship (though they
originated in that way) but as part of the ceremonial behavior expected from
one person toward another, and if this behavior is based on both patrilineal
and matrilineal descent, then it is natural for a Murngin tribesman to call
his father and his greatgrandson by the same name bapa, as was mentioned
in the Introduction, since the two of them are in the same segment, but to
call his grandfather (maraitcha) and his son (gatu) by distinct names, since
they are in distinct matrilineages; and similarly for cross-horde kinship terms.

3.6 Origin of the (4, 4)-circulating connubium

In our quasihistorical account of the origin of this (4,4)-system, each
of the participating hordes H,, H,, H,, H; will furnish zero-generation males
my, my, mg, my, and females f, f,, f., f,. The marriages in the zeroth
round will be of the form
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ny .ﬁ.'l my "_'f;:t Rlg +— fi;) g +— fo; etc,

with first- (and similarly fifth-, ninth, -..) generation children.

My1s fm.; Mg fu; Mgy, fgs; Hlggs fan; etc.,

where, as before, patriline is indicated by the first index and matriline by
the second.

It is easy to verify that in this so-called “regular” (4,4)-marriage
system (i e. circulating connubium) every person marries a cross-cross cousin
(who is not, however, as in the Kariera (2,2)-system, also a parallel-cross
cousin).

3.7 Larger alliances

In larger alliances, of 6, 8, 10, --. hordes (the existence of two moieties
means that the number must be be even), the principle of one name for
one segment is blurred. We have seen that in a (4,4) alliance the four
names Buralang, Warmut, Balang and Karmarung (for a Dua-horde) are
given to successive generations; e.g. Buralang to the segment consisting of
the Oth, 4th, 8th, -.. generations, Warmut to the 1st, 5th, 9th, -.. genera-
tions etc. But these same names continue to be used for the successive
generations in larger alliances as well, where the number of segments in
each horde, e.g. 8 in an (8, 8) alliance, is too large to be accommodated
by four names. Thus the same name, e.g. Buralang, is now given not
only to the 0, 8, 16, --- generations, belonging to the Oth matrilineage, but
also to the 4, 12, 20, ... generations, belonging to the 4th matrilineage;
and the name Warmut is given to the 1st and 5th matrilineages etc. In a
(6, 6) alliance, with six matrilineages, the name Buralang in given to the
Oth, 4th, 8th, 12th, 16th, 20th, ... generations, which belong respectively
to the Oth, 4th, 2nd, Oth, 4th, 2nd, ... matrilineages, the name Warmut is
given to the Ist, 5th, 9th, 13th, 17th, 2Ist ... generations, belonging
respectively to the Ist, 5th, 3rd, lst, 5th, 3rd ... matrilineages, etc. In
each horde the origin of the names, namely the distinct matrilineages in a
(4,4) alliance, is now forgotten, and they are regarded as names, not for
matrilineages, but for generations.



MATHEMATICAL ANALYSIS OF GENEALOGICAL SPACES 311

3.8 The general (m, n)-space

The (2, 1)-space, with two patrilines (i.e. hordes H,, H,, each consisting
of one segment) may be pictured as having arisen in the following way.
A horde Hy, in which the females f; outnumbered the males my, and the
males were relatively young, formed an alliance with a horde H,, in which
the males m, outnumbered the females, so that H, provided only males for
the alliance. The zeroth-round marriages were of the form m, « f,, with
children my,, fio, while the males m, waited for one generation. The first-
round marriages were m, <> fi, with children m,, and f,, while the m,,
waited; the second-round marriages were my, < fo), while the m,, waited,
and so on. The marriages are all of the form *(sociological) uncle-niece”,
and sibling marriages are prohibited,

In the (3,3)-space the alliance was formed by a horde H,, with zero-
generation persons my, fy; a horde H, with m,, f;; and a horde H, with
my, fi. The discussion is similar for the other spaces, (3,1) (3,2) etc.

3.9 Composition of kinship terms

In the general (m, n)-space we will have mn segments:

00 01 02 e On
10 11 12 oo 1n

m0 ml m2 mn,

where, as always, patrilineage is indicated by the first index, and matrilineage
by the second. All calculations for the first index will be carried out modulo
m (e g if m=4, then 2 + 3 = 1, etc.) and for the second index modulo n
and, in general, the kinship term by which @ addresses b (for convenience,
we assume that b is male) depends only on the number p of patri-generations
and the number m of matri-generations by which 4 is above a. Thus there
will be mn such kinship terms in all.

Let us illustrate for the Murngin (4, 4) system. Here the corresponding
16 terms (we give only masculine terms and neglect certain variants) are:

00 wawa, 01 gatu, 02 maraitcha, 03 bapa,
10 waku, 11 kaminyer, 12 waku, 13 due,
20 kutara, 21 gurrong, 22 kutara, 23 gurrong,

30 gawel, 31 galle, 32 gawel, 33 nati.
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Thus a person a, in segment 21 (i.e. Kar,) will call a person @, in 13
(1. e. Kai,), who is therefore (1 — 2, 3 — 1) = (3,2) generations above him,
by the (3,2) term, namely gawel.

Consequently, the composition of terms proceeds according to the: simple
rule:

If a; is (i, j)-generations above a, and a, is (k, /)-generations above
a;, then a, is (i + k, j + 1)-generations above a,.

Thus in the Murngin (4, 4)-space, if a, is (3,1) generations above a,
and a, is (3,2)-generations above @, then a, will be (3 + 3, 1+ 2) =
(2, 3)-generations above @, In other words a, will address his gawel’s
galle as gurrong.

Similarly, in the Kariera (2,2)-space we will have the “multiplication”
table for the composition of kinship terms:

00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00,

e. g. if @y is in Palyeri, @, is in Karimera, and @, is in Burung, then a, is
(1,0) generations above a;,, who is (1,1)-generations above a, and is
therefore (1 + 1, 0 4 1) = (0, 1) generations above a, so that for the
product or composition of Kariera terms we have the following “multi-
plication” table (table for addition of parti- and matri-lineages):

00 01 10 11 0 1 2 3
01 00 11 10 1 2 3 0
10 11 00 01 2 301
11 10 01 00, 301 2

where on the right the four entries are indexed from 0 to 3.

This table is the Cayley multiplication table for the Abelian (i.e
commutative) Klein four-group, which is the direct product of two cyclic
groups, each of order two. Similarly, the corresponding genealogical group
for the general (m, n)-space is the direct product of two cyclic groups on
in a space with k& sexes, of k cyclic groups. Consequently, by a basic
theorem in group theory every finite Abelian group is the genealogical for
some (m, n)-space.
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Abelian group, 290, 312
ablineal, 14, 51; defined 13, 31
absolute sex of speaker, 257-9
abstract concept, 7
abstract group, 135, 225
abstract kinship system
a quotient, 103
becomes concrete, 37-8
defined, 37, 46
for English, 47
abstract mathematical method, 47
actual or classificatory, 11, 16, 78, 137,
183, 187; defined 10
Adam and Eve, 7
affinal
chain, 39, 41, 70, 106-7, 110
defined, 13, 13
in-laws, 14
kinterms 14; in English 17; in
Seneca 88, 90, 93; in Tamil
101; in Taromak Rukai 110,
112; in Yurok 67-8
overlap with consanguineal, 67, 90,
102
Africa, 87
age-distinction, 5-6
agnatic descendant: defined 18
algebra, 72, 135, 225, 289
algebraic: equivalence 117; method 118;
proof 42; reduction 107
alliance, 310-1; political, 308
alphabet: defined 29
alter 9, 16, 192; defined 4
with ego, 6, 15, 25-7, 29-32, 40,
49-50, 91, 144-5, 172-6, 191,
195-6, 205-6
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alternate, (see alse regular and
alternate) 24, 186
alternate generation, 185, 237
alternate marriage, (see also right
marriage) 165
alternate patrigeneration, 131
alternate sign place system, 271, 274,
280-1, 283, 291
alternating direct exchange, 201, 209,
212, 225-6, 233
alternating direct system: with steady
direct exchange and steady indirect
exchange, 201
alternating-exchange, 234
alternating group of degree four, 220
alternation of generations, 234
Altaic, 84
anti-Ambrym system, 215-6
anticircular, 315
Arizona, 127
Arnhem Land, 155, 162, 175, 191
ascending letters F and M, 13, 27, 30
Asia, 85, 87
aspect, 1, 3
associative, -ity, 44, 45, 103-4, 134, 284,
287, 289-90
asymmetrical cross-cousin marriage, 160
asymmetric system, 234
Athena, 82
aunt-pattern, 57
attribute, 243
Austin, 259
Australasia, 113, 313, 319
Australasian section-system, 129, 131,
133
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Australia, 1-2, 87, 148, 155, 191, 201,
233-4, 293, 305, 308

Australian 161, 174, 234

auxiliary chain, (see also auxiliary

turn); defined 30-1; 39, 68, 91

auxiliary turn, 30-1; lower 31

axiom: -atization, 5-6, 12, 25, 267, 289-
90

Barnes, J. A,, 156, 158, 161

barred letters, 27, 32

basic set, 294, 301

Bateson, G., 229-32, 234, 236-7

bent line, 150

bifurcate: 91, 99, 126, 129; defined 95

bifurcate-merging, 77, 91

bilateral cross-cousin marriage, 100-1,
164, 201; defined 16

bilexemic, 80

binary split, 255, 257

binary system, 43, 72, 113

binomial distribution, 275

bishop’s move 276-7

blackfellow, 2

Bolivia, 193

box: described, 40-1; 42, 91, 97, 116,
118, 141, 168; I- 41, 117-8,
176; X- 67, 90, 101, 117; XX-
118; Y- 67, 90, 101, 116, 118;
?-— 117-9; G“ 69

Brant, C.S., 72

bride-wealth, 147

British, 13, 135

broken line, 168

Bruner, Goodnow and Austin, 259

Burma, 85, 192-3

bwelem, 210

California, 6, 15-6, 26, 47, 53-4, 67, 87

cancellation, 104, 283

cartesian plane, 273

caste, 13

catalog: of kinship systems 47, 128-91,
266, 51; of types and subtypes 96,
100, 262

GENERAL INDEX

categorization, 243

category or kinship category, 16,270-1,
274-7, 280-1, 283-4, 286, 288-91
addition, 282, 285
affinal, 274, 280
altercentric, 285, 288, 291-2
ascendent, 274
collateral, 273, 276, 280
collateral-affinal, 275
defined, 243, 269
descendent, 274
diagram, 273-4, 278, 280, 288-9
digit, 284
displaced egocentric, 285, 291-2
egocentric, 285, 287-8, 291-2
egneralized, 272-3, 284
lineal, 273, 276, 281
multi-digit, 278
multi-pair, 273-4
nonstep-, 272
null, 271 '
numerical, 271-2, 283-4, 288
one-pair, 286
original, 291
primary, non-lineal, 272
step-, 272, 283-4, 289; primary, 272
Cayley, A, 135
Cayley graph, 165, 320
Cayley multiplication-table, 135, 312
central generations, 89, 126, 156
defined, 32
chain, 2, 18, 27, 29-41, 43-7 49-51, 68,
70-1, 91, 97, 100, 103-4, 106-8,
116, 119, 123-4, 131, 134, 141,
144, 153, 183, 189, 191, 195-6,
207, 230, 303
ablineal, 31
affinal, 39, 41, 70, 106-7, 110, 112
auxiliary, 30-1, 39, 68, 91
collateral, 31, 68-9, 82, 101, 206
consanguineal, 18, 31, 37, 70, 72,
106-7, 110
cross-cousin, 91
defined, 28
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descending, 100
distinct classes of, 112
empty, 31, 44
equivalence of, 51
even or odd, 97, 245
focal, 69-71, 107
grandparental, 91
imbedded, 29, 50
linking, 31, 131, 145, 191-2, 244
natural, 30-1, 38-9
of (any) length, 71, 107, 118
of height zero, 144-5
pairs of, 45
patri-height of, 137
reciprocal 44, 105
sectional, 137, 139
set of, 32, 44, 46, 106
taker and giver, 173
chain-coincidence, 40, 50, 70, 93
chain-equivalence, 29, 41, 50
chain-equivalent; 207; defined 38
child, 1, 6, 9, 12-3 15-6, 19, 21, 25-7, 31,
35, 40, 77-9, 81-2, 91-2, 164-5,
188, 229, 232, 246, 248, 259
circle, 4, 148, 156, 163, 165, 201-3, 216,
222, 224
circular indirect exchange, 147-8, 163,
165
circular (er cirulating) connubium,
308-10
in Eastern Sumba, 168
of four clans, (Karadjeri) 150
of six clans, (Murngin) 171
circular definition, 4
clan, 19-23, 81-83, 147-8, 150, 155-6,
160, 162-174, 179-81, 184-9, 191-3,
201-2, 204, 207, 209-10, 212, 216-7,
220, 222-7, 230-4, 236-7
clan-index, 166
class, 5-6, 20, 37-8, 45-7, 79-80, 104-6,
112, 131, 240-6, 248-51, 234,
277, equivalence 318
class-multiplication, 37, 45-6
classificatory, 10-1, 16, 79, 86-8, 111,
133, 137, 183, 187-8, 195, 206,
210, 214, 222, 236
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Cleopatra 305
cliché, 225, 230-1, 236-7
closed binary system, 43, 103
closest common ancestor, 15
coincident or coincidence, 50, 127
collateral; -ity, 279; defined 13, 30
chain 31, 68-9, 82, 101, 206;
kintype 87; line 79;path 67,
90, 101, 116; relative 15, 67,
111, 188
collineal, 14, 246-7; defined 13, 31
common ancestor, (see also consangui-
neal) 13, 15, 142
common term, 82
commutative, 284, 287, 290, 312
group, 106, 108, 150, 165, 179
component, 243, 315
componential analysis, 243-247
concatenation (see alse multiplication)
29, 43-4, 103, 282-6, 288, 290
concept, 4, 7, 18; defined 243
conjunctive; -ness, 241, 245, 247-9, 251,
253, 258-9; defined 239-40
factorization, 241-2, 247
partition, 240, 249, 252, 255, 257
product, 241; subset 240-1
terminology, 239
concrete (see also abstract system), 37-8
connected, 25, 29-31, 40
connubium, 170, 221, 212, 319
with direct exchange 147; steady
(Kariera) 201; alternating
(Ambrym, Aranda, Dieri, Vao)
201, 209, 212, 233
with indirect exchange, 147-8, 163,
165; steady (Karadjeri,
Murngin), 201
connubial complex, 155-6, 162, 172, 195
2n-connubium, 183
2n-right connubium, 186
three-clan connubia, 208
four-clan connubia, 162, 181, 185-6,
267
(4, 4)-connubium, 179-80, 183-4
4=right connubium, 185
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five-clan connubium 212

six-clan connubia (er circular),
162, 181, 185-6, 267

(6, 4)-connubium, 167, 183-4

non-commutative connubium, 233-4

Ambrym system (or connubium),
209, 215
anti-Ambrym system, 215-6

Aranda system (connubium), 201-2,

214
earlier-Vao system, 216
Eastern Sumba complex, 189
Iatmul connubium, 231-3, 267
Jingpaw system, 193-4, 267
Karadjeri system, 214
Kariera system (or connubium),
214, 221
Kokata system, 216
Murngin complex,
four-clan cycles, 189
six-clan cycles, 189
permutation-group, 222
Purum complex, 192-3, 195, 267-8
Siriono case, 193-4, 196-9, 267
Vao system, 216

consanguineal, 14, 18, 20

defined, 13, 31

and/or affinal, 17, 20, 110

overlap with affinal, 67, 90, 101-2

chain, 18, 37, 70, 72, 106-7, 110
defined, 31

chain-equivalence, 41

kingraph: Yurok 69; Twana 75;
Seneca 91-2; for non-prescrip-

tive system 106

kinlist: Lower Burma 72; Seneca
89;

kinterms 18, 67, 70; Seneca 88-9:
Taromak-Rukai 110

relation, 13, 107

relative, 18

system: Twana, 72

terminology, 14, 101

convenient, 241
coordinate pair, 276, 278-80
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coordinate system, 276

correlation, 280-1; negative 280;
reciprocal 281

co-spouse, 286

cousin

be ablineal, 14

cousin or first cousin, 14, 16, 18,

25, 40, 51, 63, 70, 77, 276-7,
285, 289
non-removed, 15, 68
once-removed, 16, 26, 30, 34-7,
39, 276, 286, 300
down 36; up 36
twice-removed, 35, 206
three-times-removed, 37
n-times removed, 307

consin’s wife’s consin’s husband, 25
cross-consin, 12, 16, 49, 63, 65, 77,

116, 307
actual, 11
bilateral, 16; marriage, 101
classificatory, 11
chain, 91
defined, 9
first-cousin, 206
marriage, 16; patrilateral, 17,
222-3, 226
matrilateral, 16, 65, 304;
marriage, 17
rule, 97
opposite sex, 50
patrilateral, 65, 91, 116, 304
defined 16
same sex, 10
second-cousin, 16, 123;
marriage, 206
string, 29, 97
500th cousin, 18
matrilateral, 49
nth. cousin (non-removed), 15
nth cousin-m-times-removed, 15, 299
parallel-consin, 49, 63, 65, 68, 77, 91
defined 9; patrilateral 65;
matrilateral, 65
removed cousin, 35
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second cousin, 14, 18, 35, 41-2,
206, 220, 288
non-removed, 15, 111
once-removed, 37, 302-3,
female, 91
sex is distinguished in Piro, 12
terminology, 16
third-cousin-twice-removed, 297
coverset, 18, 31, 33-40, 49-50, 58-9, 68,
70-2, 91, 97, 100, 124, 150, 205;
defined 30
coincidence, coincident, 38, 49, 112;
defined 35
equal, 34-5, 39, 59; defined 30
equal chain, 33, 39
equality, 33-35, 37
equivalence; equivalent, 34-6,
38, 91; chain 38
recurrence, 39-40
criteria, 101 (for formal notation), 246,
258
cross-aggregate, 307
cross-marriage, 16
cross-moiety, 163
cross-nepnew and/or niece, 9, 58
cross-sibling, 12
cut-off rule, 126, 262; point 279; defined
70
cycle (see also connubium), 163, 169,
191-2, 227
four clan marriage, 168
network of interlocking, 189
six-clan, 166
of reciprocity, 226
cyclic group, 312

Dawin, 81

dashed line, 25, 141, 225

daughter (or D-) exchange, 133, 153, 171
daughter’s daughter exchange, 171, 184
Deacon, A.B., 209-12

defence alliance, 81

defining relation, 186

degree, 221-2
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denotatum, 245
descending chain, 100
descending letter (see alse barred
letter), 13, 30
descriptive, 63, 65, 79-80, 83, 86-7
terminology, 79-80, 82, 86-7
designatum, 246; defined 245
diacritical mark, 10, 49
diagonal: distance, 279; line 307;
main 278-81, 289; slash 52
diagram, 25, 40-1, 201, 275
category, 273-4, 278, 280, 288-9
dictionary, 31, 43-4, 103; defined 29, 32
order 32-3, 93, 108
digit, 271-2, 274-5, 277-8, 280-3, 285-7,
289, 291; final 271-2; inital
271-2; innermost 287; multi-
278; positive 271
dihedral group, 225
dimension, 243
directed line, 40
direct exchange, 212
of mother-in-law, 184
sister exchange, 186
symmetric exchange, 147
sibling-exchange, 307
direct giver, 163, 166, 180, 191-2
wife-giver, 147
direct taker, 163, 166, 180,191-2
wife-taker, 147
disjunctive, 239-41, 247, 249 259
disjunctive grouping, 259
division, 220
distafl’ side, 39
domain, 314
dot, 25, 296, 298-301, 303
dotted line (see also wife-line), 107,
141, 147, 225
double vertical line, 52
dual, -ity, 296-8, 300, 302, 305
Dutch, 84

earlier-Vao, 216
Eastern Continent, 3
Eastern Sumba complex, 189
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Egypt, 305
Elkin, A.P., 139-40, 148, 150, 158, 164,
169, 206-7
empty chain, 31-2, 44; defined 28
eponymous, 7
ancestor, 306, 309
ancestress, 309
equality, 139, 141
equivalence, 51, 111, 118, 139, 231, 289
equivalence class, 68, 246, 315, 318
defined, 5
equivalence-relation, 105
equivalence-rule(s), 1, 16, 46, 49, 51,
72, 96, 104, 128, 261, 268
for Chinese system, 129
for Crow type, 124, 129
for English system, 38-40, 44, 47,
52, 68, 71
for Fox, 44, 47, 117-8
for Kariera, 139, 144
for Omaha type, 116, 129
for Seneca, 91-2, 99
for Tamil, 44, 105-7
for Tamil-Telegu, 97, 99
for Taromak-Rukai, 110-1
for type and subtype, 262-6
for Yurok, 47, 68-71
equivalence-sign, 71-2
equivalent (see also chain-equivalent),
5, 39, 42, 45, 68-71, 100, 105,
112, 115, 132, 287, 292
defined, 38
element, 45
Estonian, 84
evolution of human marriage, 81, 86
evolvable, 225, 257
evolvable partition, 255
evolvable terminology, 257
exchange of sister’s daughter, 175
exogamous; exogamy, 20, 22, 81, 155
patrilineal group, 196
expansion, 71, 72, 91
extended, 10

factor, 35, 40, 251

GENERAL INDEX

factorial n, 134
factorization, 241, 242-3

of partition, 241
fatherling, 30; defined 26
father-mother-child triad, 12
female referent, 40
female speaker, 15, 26, 31, 91, 107, 122-4
finite group, 112-3, 134
finite set (of persons), 12, 133-4
FMBSD-marriage, 234
focal chain, 69-71, 107
focal kintype, 124
focal string, 231
foci, 31; defined 32
formal alphabet, 29
formal notation, 27, 29, 101
formal (X, Y)-notation, 26
four group, 135
free group on one generator, 112
free marriage, 14
free monoid, 70

on four generators, 47

on two generators, 47
FZD-marriage, 230
formation of strings from chain, 49

galle marriage, 14
genealogical line, 2
genealogical group, 312
genealogical space, 6-7, 293, 296, 301,
312; defined 5, 275
generalized exchange, 227
general law, 1, 33-5, 38
generated, 19-20
generating relation, 46, 212, 220
for alternate direct-exchange, 225
for Ambrym, 221, 263
for anti-Ambrym, 216, 263
for Aranda, 221, 263
for Dieri, 208, 263
for English abstract kinship system,
47
for Fox, 47, 263
for group of sectional relations, 148



GENERAL INDEX

for Karadjeri, 150, 170, 221, 263

for Kariera, 170, 221, 263

for Kokata, 218, 220, 263

for Iatmul, 221

for matrilateral cross-cousin
marriage, 223

for Murngin, 165-7, 170, 179-80,
186, 263

for patrilateral (cross-cousin)
marriage, 223, 225, 263

for Seneca, 92-3, 263

for Tamil, 105-6, 263

for Taromak-Rukai, 111, 263

for Yurok, 47, 263

for Vao, 213, 221, 263

generation, 15-6, 18-23, 27, 32, 35, 53,
63, 68-70, 81-2, 95, 97, 99-112,
115-6, 118-9, 129, 131, 140, 142,
144-5, 150, 158, 162-3, 166-9,
187-8, 195, 201-2, 204-5, 209,
211, 214, 216-7, 224-6, 231,
234-5, 245-6, 297, 302, 306-8,
310=2; defined 296
generational, 63, 69, 110, 112
presctiptive (system), 110-1
system, 63, 72, 81, 110
type, 52, 85, 179
generation pattern, 51, 70, 72, 93, 95-6,
100
generation relation, 70
generator, 47, 70, 92, 107, 135, 150,
165-6, 168, 220
geometric: procedure 42; diagram 40;
method 118; proof 41
Gifford, E.W., 6, 51, 67, 72
giver, 147, 163, 166, 176, 192, 216
and taker, 171-2, 174, 183
chain, 173
clan, 166, 173-4
kinterm, 173, 183
gloss, 11-2, 41, 52-3, 71, 116, 119
defined, 11
gotra, 227-8
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Gough, K., 13
G,-pattern, 54
G_;-pattern, 59
G, self-reciprocal pattern, 59
grandkin pattern, 51-2, 59
graph, 165, 168, 296; defined 40
Greece, 84
Greek letter, 49, 53
Grossman and Magnus, 289-90
grid, 139, 141
group, 31, 44, 101, 104-8, 111, 131,
134-5, 150, 165-7, 179-80, 186,
221-2, 225-6, 235
defined, 103
element, 105
multiplication, 290
on two generators, 106
to be complete, 222
groupoid, 43-4; defined 43
group theory, 144, 289-90

half, 20
half circuit, 153, 170
Hawk, 21, 83

head hunting, 236

height, 32, 71, 137, 145, 191, 244
matri-, 144; patri- 144

Hellen, 7

Herbert Spencer, 81

highest common descendent, 270, 274,

277

history of marriage, 80-1, 87

horde, 214-5, 305-9, 311

horizontal (line), 52

horizontal brace, 141, 150

husband-line, 176

husband-wife line, 107

iai-marriage, 230-1

Ichikawa, M., 95

identity, 44, 167, 222, 289, 294

identity-element, 44-6, 103, 280, 283,
290
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imbedded, 50

incest-taboo, 111

inch system, 276

incovenient, 241

India, 3, 12, 63, 83-5, 95, 192

Indies, 78

indirect (asymmetric) exchange, 147-8
asymmetric exchange, 147-8
giver, 147, 166, 130, 192
taker, 147, 166, 180, 192

individualizing, 79-80

Indo-European, 83-6

infinite: cyclic group 112; group
112-3; order 113

informal notation, 27, 49

information theory, 275

ink blot pattern, 280

Inquest on the Murngin, 156, 161

integer, 5, 134-5

internal recurrence, 49

intersection, 239-40, 292

inverse, 103-6, 115, 134, 145, 274, 280,

289, 291, 294, 296-7, 300;

element, 103-4
multiplicative, 291

Towa, 21, 53, 116, 119

Ireland, 80

isomorphic, 135

isomorphism, 275

ltaly, 84

Ituri forest, 95

Jack and lill, 9, 27
Jones, 21
js | jd pattern, 52

Kachin Hills, 193

kaminyer-exchange, 184

Kansas, 119

Khaing, M. M., 72

kinchain, 31, 59, 108, 139, 173-4, 233
defined, 28

kinclass, 40, 68-70, 80, 93, 108, 319-21
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auxiliary 38; defined 38; natural 38

kindred, 3
kingraph, 40-1, 67, 69, 72, 95, 107-8,

111, 116-7, 124, 135, 150, 171,
180, 202, 212, 268; defined 40

Anti-Ambrym, 216
Aranda, 202-4
Ambrym, 209-10
Crow, 126
Dieri, 208
English, 41
Fox, 117
Hindi, 94
Hopi, 128
Iatmul, 235
Jinghpaw, 194
Karadjeri, 150, 152
Kariera, 136, 142-3, 146
Kokata, 218
Lower Burma, 73
matrilateral marriage, 223
Mbuti, 96
Murngin, 165, 167, 169, 179-80
Piro, 109
Purum, 193
patrilateral marriage, 224
Republican Pawnee, 125
Seneca, 92
Siriono, 194, 197-8
Southern Miwok, 120
Tamil, 108
Tamil-Telegu, 99
Taromak-Rukai, 11
Trobriand, 127
Twana, 75
Tzeltal, 126
Vao, 213
Wintu, 122
Yurok, 69

kinlist: defined 17
Ambrym, 211
Dieri, 270
English, 17
Fox, 116
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latmul, 232
Karadjeri, 152
Kokata, 219
Morgan's, 88
Seneca, 89-90
Tamil, 98, 102
Taromak-Rukai, 110
Telegu, 98
Twana, 74
Wintu cousin, 123-4
Vao, 213-4
Yurok, 67-8
kinship
in the narrower sence, 2
in the wider sence, 2
terminology, 2, 5-6, 15, 51, 72,
78-9, 81, 86-7, 100, 164
kinship study, 4, 87
as a science, 1
in mathematical method, 266
kinship system, 2-4, 6, 18, 31, 33, 35,
39-40, 319-21
kinstring, 211-2; defined 28
kinterm, 1-6, 10-2, 14-8, 26-7, 30~1, 33,
35-7, 40, 44, 49-53, 56-7, 67-72,
77-8, 80, 88-9, 91
coverset, 29-30, 37-9, 50, 68, 71
defined, 30
recurrence, 2-3, 33, 51, 141
reciprocity, 53, 59
self-reciprocity, 26
kintype, 87-9, 272, 297, 299-300
Klein, Felix, 135
Klein (Tour)-group, 134-5, 312
Korn, F., 230, 234
kutara-exchange, 158, 134

label, 37. 161, 243, 245

Lake Eyre, 202

Lake Superior, 3

latent, 23; defined 21; matriclan 214

Latin, 9, 26, 80, 84, 115, 123

Lawrence and Murdock, 160-1

length, 30, 31-2, 39-40, 103, 107, 118,
139, 192, 195, 297, 302

Layard, J., 215-6
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Leach, E.R., 12, 193
leading chain; defined 32
leading focus, 33, 72, 107; defined, 32
Lectures on the Science of Language; 86
length, 30-2, 39-40, 103, 107, 118, 139,
192, 195, 297, 302
of a chain, 31, 71
letter, 29, 31, 33, 70
letter “r”, 59
Lévi-Strauss, C., 158, 226-8, 237, 268
lineage, 13, 18-20, 1538, 166, 168-9,
173-4, 183, 226
lineal, 13, 50, 52-4, 68-9, 79, 197, 111,
262; defined 30; ascending 13
descending 13; focus 69
line: dashed 168; dotted 168; solid 168
link; linked, 25, 27, 30, 34, 50
linking chain, 2, 29-32, 131, 145,
191
Liu, P. H., 155-6, 162, 168-71, 180-1,
183
Liu's theory, 157, 171
logical structure, 1
Lounsbury, F.G., 1, 87, 99-100, 123-4
lower auxiliary turn, 31
lower-case letter, 11, 46, 71=2, 105, 112,
132; defined 10
lower turn, 30-1, 70
lowest common ascendents, 270, 274, 277
Lowie, R.H., 82
main diagonal, 278-80
main segment, 22
Malabar Coast, 12
male line, 18
male referent, 52
male speaker, 9, 15-6, 26, 49-50, 52, 59,
77, 88, 91, 118-9, 122-4, 158,
205
manageability, 240-3, 248, 258
marriage
aggregates, 307
alliance (see also connubium), 148,
235, 304-6, 309
between sister’s daughter and
brother’s son, 227
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between sister’s son and brother’s
daughter, 227
class, 217
cycle, 168
distance, 195
regulation, 142
structure, 212
with own second cousin, 207
with the father’s sister’s daughter,
226
with the mother's brother’s
brother’s daughter, 2267
marry in a circle, 156, 162, 165
material, 240, 242, 248, 258
mathematical method, 266-7; activity
4; concept 4, 7; definition 4; method
266-7; statement 7, 26; text 6
mathematicization of kinship, 12
matriclan, 21, 175, 216, 223
matricycle, 167, 176, 183, 267
matri-height, 144; defined 137
matrilateral, 16, 50, 65, 91, 93, 101, 148,
201-2, 223
(cross)-cousin,- 16, 106
(cross-cousin) marriage, 16, 17, 222,
224, 226-8; defined 16
matriletter, 72, 129
matriline, 40, 42, 117-8, 158, 162, 167-8,
174, 176, 184, 211, 302, 310
defined, 25
matrilineage, 304, 306-8, 310-2
cross-, 305; defined 19
matrilineal, 13, 81-2, 212
moiety, 207
matriliny, 175, 183
matrimoiety, 215
matrisequence, 183
maximal, 50; chain 50; string 50, 52
mbapma, 231
MBD-marriage, 11, 106-7, 148, 186,
195-6, 227, 230
meaning, 244, 247
meaning of meaning, 244, 246
merging, 77, 91
rule, 68, 79, 97, 262
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system, 68-9, 77, 91, 104, 195
mirror-image, 278
moiety, 19-21, 23, 131, 141, 144, 155,
160, 163, 185, 189, 191-2, 202,
204, 214-5, 223, 306
defined, 20
monogamous marriage, 82
monoid, 31, 43, 44-47, 70, 72, 92-3,
103-4, 112-3, 131, 261
defined, 43-4
on four generators, 47
on two generators, 47
Morgan, Lewis Henry, 3, 58, 65, 77-89,
92, 95, 97, 99, 113, 116, 118, 268
Morgan’s assumption, 82 (or theory)
Morgan’s (kin) list, 87-8
Morris, C. W., 245
mother-in-law avoidance, 214
mother-in-law bestowal, 175
mother-in-law exchange, 174
motherling, 26
Miiller, F. M., 83, 86
multiplication, 43-5, 103-4, 134, 312
described 29; table 46
multiplier chain, 37
Murdock, G.P., 51, 277
Muslim, 13

natural chain, 30, 38-9; defined 31

natural turn, 30, 38

Naven, 229, 234, 237

nearest common ancestor, 15, 187

Nebraska, 47, 115, 119

Needham, R., 168, 189, 193, 230

negation, 280, 282, 291

negative: place, 288 291; power 106;
reciprocal, 274, 280-2

nephew-niece chain, 58

nephew | niece pattern, 51, 59

network of interlocking cycles, 189

New Guinea, 21, 229

New world, 79

New York, 3, 21; World’s Fair 275

non-Aryan, 84, 95



GENERAL INDEX

non-bifurcalte, 47, 77; delined 39;
rule 68; system 70
non-commutative
connubium, 226, 233-4
group, 220, 225
non-coverset-equivalent chain, 38
non-empty coverset, 40
non-identical permutation, 222
non-maximal string, 50
non-merging, 68, 77, 129
non-positive gencration, 150
non-prescribed marriage, 100, 237
non-prescriptive, 15, 110, 116, 262
(kinship) system, 44, 70, 106=7, 113
marriage (system), 41, 67, 261-=2
non-redundant set, 105
of equivalence-rules, 107
non-regular marriage, 164
non-sectional, 142
(kinship) system, 65, 129
non-sexdistinguishing saace (or
societies), 293, 296, 301
notation, 26-7, 32, 301-3, 309
alternate sign place system, 271,
274, 280
conventional, 277, 281, 283-4
formal, 26-7, 29
informal, 27
numerical (category), 282, 301-3,
309
of Radcliffe-Brown, 281
of Romney, 281-2
traditional, 9, 26~7, 33, 270
nth-cousin-m-times-removed, 15
nth cousin non-removed, 15
null move, 275

Oceania, 201

Old English, 80, 115, 123

opposite sex, 53; brother, 53: cross-
cousin, 50; sibling, 9, 78; sister, 53

order, 32, 51, 134, 220-2, 225-6, 251,

277, 281-4, 298, 300, 312

defined, 113

origin, 275; defined 273

original progenitor, 20
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Origin of Species 81
overbar, 26
overlap between consanguineal and
affinal (terms), 14, 101
overt, 23; defined, 21; patriclan, 214;
patrimoiety, 214

Pacific, 3

Pacific Island, 85

pair, 4-6, 25, 29-30, 35, 40, 43-4, 46, 70,
105, 127, 132, 135, 141, 160,
243-4, 251

parallel, 53, 82, 254

cousin, 9, 49, 63, 65, 68, 77, 91
defined, 9
nephew and niece, 9, 58, 78

defined, 9

parent, 6, 9, 11-3, 25-8, 53, 56, 81

parenthood, 5, 25; defined 6; social 12

parent-relation, 6, 26

parity, 148

partition, 5-6, 20, 29-30, 33-5, 37-8, 40,
45-6, 72, 97, 106, 131, 240-6,
248-52, 254-5, 257, 259; defined
4; even-odd 46; stable 45-6

paternity, 123

Pascal’s triangle, 275

path, 117-8, 153, 171, 173, 195, 206, 235,
274-5, 280, 288-9, 296-7

patri-ancestor, 18

patriclan, 21, 175, 187, 195, 202, 216, 224

patri-concept, 19

patricycle, 167=8, 179, 217

patri-descendant, 18-9, 188; defined 18

patridescent, 150

patrigeneration, 19

patri-height, 144; defined 137

patrilateral, 16, 50, 65, 93, 224, 226

cross-cousin, 91, 116; defined 16
(cross-cousin) marriage, 222-3,

225-7, 229, 234, 237
defined, 16
group, 225
system, 233
patri-letter, 72, 108, 129, 137
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patriline, 42, 117, 150, 156, 160-1, 168,
180, 302, 311; defined 25;
solid 40
patrilineage, 21, 150, 158, 304, 306-8,
311-2; cross- 305; defined 19
patrilineal, 81, 155, 160, 175, 210, 212,
306; ancestor 19, 233; clan
230-1; descent 21; group 225;
line 158, 188, 231: moiety 207;
section 226
patrilocal, 155, 175, 214, 300
patrimoiety, 160-1, 215
patterns in G, 53
patterns in G.,, 58
patterns of recurrence, 3
pb | pz pattern, 52
Pentecost, 216
permutation, 133-5, 148, 221-2, 235,
314; group 133, 222, 225
personal: (kin) chain, 132, 139;
kinterm 139 143, 145; relation
131, 137
Peru, 3, 11, 108
polygyny, 164
positive place, 288
potential spouse, 197, 199
potlatch, 147
power, 294, 296, 301-2
pre-Aryan, 86
prescribed marriage, 12, 14-5, 23, 44,
50, 87, 90, 101, 221, 236-7
MBD-marriage, 197
sister-marriage, 110
prescriptive, 15, 305; grid 148;
(kinship) system 41, 44, 107,
110, 113; marriage 106, 111,
127, 261, 319; non-sectional
system 113; terminology 13
primary, 10, 13; relation 13, 277;
relative 283; split 255, 258-9
principal focus, 72
principle of alternation, 231
Principles of Biology, 81
Principles of Sociology, 81
procreator, 82
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product, 29, 31, 35-7, 43-5, 47, 71, 106,
111, 133, 242, 294, 297-8, 300,
303
defined 29; direct 312; dual 298;
inner 298; chain 36; of relations
247: of two classis in P 37
progenitor, 20, 308; defined 19
original 20
property, 243
propinquity, 279
Proto-Germanic, 84
Proto-Slavic, 84

quodrant, 273-4; hyper- 274
quotient, 103; monoid 45-6

race, 7, 20; defined 6
Radcliffe-Brown, A.R., 2, 270, 277
Reay, M., 21-2
reciprocal, 15, 26, 33, 91, 105, 115, 174,
280-2, 289-91; ‘relation 26-7;
chain 27, 44, 105; coincidence
119; rules 47, 97; string=
coincidence 119; term 26
reciprocity, 59, 227, 280
recurrence, 1-3, 11, 35, 38-40, 131
in kinship terminology, 1-2
of coversets, 39-40
of kinterm-coversets for strings, 118
of phenomena, 1 -
reduction, 71-2, 91, 139, 285-90
re-entrant patriline, 118
referent, 10, 40, 44, 53, 95, 257-8
defined, 4
regular, 222
marriage, 164-5, 186, 188
(permutation)-group, 221-2
regular and allernale, 24, 186
relation, 1-6, 13, 15, 17-8, 25-6, 105-7,
296-7, defined 294; cgocentric
269; mathematical definition 4;
primary 270; primitive 270;
step- 286; stratifying 296
relative age, 29, 40, 51, 57, 59, 142,
171-4, 244, 248, 258-9
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relative length, 174

relative sex (of speaker), 40, 49, 51,
53, 57, 59, 72, 248, 257-9

reverse, 27

right marriage, 23-4, 185-6, 188

Romney and D’Andrade, 270, 291

rook’s move, 276, 279

rotating direct-exchange (marriage),
216, 268

rule-equivalent, 112

Sacramento Valley, 16
Sanskrit, 63, 84-6
scalar multiplication, 280, 291
secondary split, 255
section, 12, 20, 22-4, 107, 131-3, 135,
137, 139, 141-5, 148, 150, 153,
209-11, 220-3, 225, 231, 237,
168, 170, 185-6, 192, 201-2,
205-6; defined 22; system 113,
139, 143-5, 148, 205, 231, 262
sectional, 142; chain 137, 139; father-
relation 131-2; identity array
132; kingraph 135, 179; mother
relation 132; reduction 137;
relation 131, 133, 135, 137, 148,
165, 179, 222; sibling-relation
132; structure 145; wife-
relation 132
segment, 143, 170, 212, 216, 293, 305-7,
309-12; defined, 304
segmented: society 293, 304; spaces
302, 304
self-reciprocity, 27, 72
semi-bifurcate, 126
semigroup, 103; defined 44
semitic, 83-4
sequence of letters, 11, 27, 29
set, 6, 21, 30, 32, 37, 166-7
of all chains, 30, 32, 37, 40, 44, 46,
106
of all even integers, 44
of all integers, 5, 43-6, 103-4
of all patridescendant, 18-9
of all persons, 19
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of all possible chains, 29
of all words, 43-4
of alternate generations, 22, 220
of axioms, 267
of chains, 29, 32
of clans, 20, 148
of classis, 45
of concepts, 267
of descendants, 21
of elements, 4, 43, 245
of equivalence-rules, 101, 116
of equivalent kinchains, 38
of (four) integers, 5, 133
of generating relations, 105, 107
of kinterms, 50, 59
of lineages, 20
of lines, 5
of males, 20
of marriage-rules, 231
of native kinterms, 30
of original progenitors, 20
of pair (a, b) of persons, 131
of pairs (of elements), 4
of pairs of chains, 46
of pairs of persons, 4-5
of partitions, 240, 242, 244, 248, 258
of patridescendants, 19
of permutations, 134-5
of personal relations, 5
of persons, 5, 19, 21, 150, 233
of points, 5
of set (of elements), 4, 267
of sub...clans, 21-2
of subsets, 4-5, 239-40
of systems, 4
of the eight sibling types, 248
of undefined elements, 5
of ultimate primitives, 4
seven-line chart, 181
sex, 12, 28, 49
discrimination, 95
distinction, 5, 301-2; defined 6
distinguishing space, 301-2
duality, 304
line chart, 181
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of person, 28-9
of the referent, 39, 49, 51, 53, 59,
72, 248, 257-9
of referent partition, 244
of the speaker, 27, 40, 49, 51, 53,
59, 63, 72, 248, 257
of speaker partition, 244
sexual promiscuity, 81
Shakespearian, 20
Shapiro, W., 20, 156, 158, 162-3, 167,
170-5, 179, 183-4, 186-7, 189
shortest connecting chain, 30
shortest sequence of letters, 11
sib, 156
sibling: kinterm 248; marriage 305;
pattern 51, 52-3, 65, 72;
terminology 239-40, 243,
247, 248-9, 253, 255, 257-9
significatum, 245-6
single large marriage network, 162, 189
single vertical line, 52
sister-exchange (marriage), 133, 153,
156, 160, 186, 201, 230
sister-marriage, 111
sister’s-daughter-exchange marriage, 153
sister’s daughter’s daughter exchange,
170
six-clan (circular) connubium, 162,
171, 181, 184, 267
six-clan cycles, 189
6, 4-case, 184
6, 4-Murngin (connubium), 165, 167,
171, 184
6-regular connubium, 175
skewing (rule), 115, 124, 129
slash: through a symbol, 5
Smith, 21
solid line, 25, 141
sororal, 26, 122, 124
South America, 87
South India, 59, 77, 108
space, 231, 294, 296, 301-5
defined, 5
(1, 1) space, 305
(2, 1) space, 311
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(2, 2) space, 305, 307
(3, 1) space, 311
(3, 2) space, 311
(3, 3) space, 311
(4, 4) space, 305, 308, 309
speaker, 9-10, 15, 18, 26, 31, 49, 53, 206
defined, 4
Spencer and Gillen, 205
spouse-line, 107
stability, 36
stable, 38, 45-6; defined 37, 45; partition
46, 103; under multiplication
35
steady direct exchange (see also
connubium), 201
steady indirect exchange, 201
stratifying; defined, 296
with respect to each sex, 301
string, 29, 49-53, 91, 119; defined 28:
formation of 49; partition of 29,
97; coincidence 50-1, 70, 119, 122,
124, 126~7, 261-2; equivalence 128;
patterns 51, 65
structure, 3-5, 43-4, 210, 212, 267, 296,
301, 314; defined 4, 294
subclan, 22, 187; defined 20
sublineage, 20; defined 19
subpattern, 56
subsection, 22-4, 158, 162-8, 170, 179,
183, 185-6, 191-2, 220
subsegment, 186
subset, 4-6, 20, 239-40, 243, 248
of progenitors, 20
subsidiary letter, 27-8, 49-50
substitutability, 38, 50
substition, 38, 46
subsubclan, 20-2
subsubsubclan, 20, 22
subtype, 126, 262; defined 29; catalog
264-6
supplemental statement, 39-40, 69, 95
sword side, 39
symbol, 5, 29, 35, 37-8, 43, 50, 236, 268
symmetric, 296, 302: group 134, 320
Systems of Consanguinity and Affinity of
the Human Family, 3, 83, 118
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Taiwan, 110
taker, 163, 166, 176, 192; clan 166,
172-4, 180; (kin)term 173, 183
Tax, S., 116
teknonymy, 270
terminology, 3, 30, 33, 35, 37
classificatory, 87; descriptive 87
term of relationship, 3
term of address, 12
tertiary split, 255
The Elementary Structure of Kinship, 226
The League of the Iroquois 83
theory of binary system, 72
three-clan connubia, 268
three-generation cyclings, 127
torus, 168
trace(d)-out, 92, 124, 144, 153, 171, 176,
206, 233, 235
tracing-out, 41-2, 92, 106-7, 117-9, 137,
141, 166, 205-6, 208, 212, 223,
234
traditional notation, 9, 26-7, 33
transitive (group), 222
transposition, 289-92
turn: defined, 30; auxiliary 30-1, 38-9,
68, 91; lower 30-1, 70;
natural, 30-1, 38-9;
upper, 30
2n-(right) connubium, 183, 186
type, 29, 262
types of kinship system, 262
catalog, 264-6; defined 29

ultimate ancestor, 20; defined 6
ultimate parents, 7
ultimate primitive, 1, 5
defined, 4
uncle-aunt pattern, 56, 58
underlying set, 5, 43, 239, 243, 314
defined, 4
undifferentiated homogeneity, 81
undifferentiated horde, 81
undifined elements, 5
union, 240
United States, 87
universe of discourse, 243
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unstable, 37-8
under multiplication, 35
upper auxiliary turn, 31
upper-case initial, 70
upper-case letters, 10, 71, 93, 139
defined, 10
upper turn, 30

vector theory, 291

vertical: column 140; cylinder 161,
168;periodicity 141; slash 10

virilocal, 155, 306

visiting husband, 13

Volga, 84

Warner, W. L., 155-6, 158, 160-1,
169-73, 175-6, 180-1, 183-7, 267

Warner’s (kinterm) chart, 156, 180,
183, 187, 191

Washington, 72

wavy vertical line, 53

Webb, T., 24, 161 164, 181, 183, 185

Webster, 1, 4, 32, 80

wife-clan, 186

wife-cycle, 166-7

wife-giver, 162

wife-line, 147, 168, 176

wife-taker, 162

Wolf, 21

word, 10, 19-20, 32, 35, 37, 43-4, 80, 83,
86, 103, 245; defined 11, 29

wrong marriage, 20, 23, 161, 165,

185-8, 186
Wyoming, 21

(X, Y)-notation, 33, 129, 231
defined, 26

Zaire, 63, 95

ZD-exchange (marriage), 153, 171, 184

ZDD-exchange marriage, 156, 158,
170-5, 184, 186, 223, 234, 267

ZDDH-relation, 176

Zeus, 82

Z-exchange, 184, 186
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Algonkian
sibling pattern, 54
Ambrym, 215-6, 231, 319-20,
alternating direct exchange, 201,
212, 225
class system, 234
connubium, 209
equivalence-rules, 263, 266
kingraph, 210
kinlist, 211=2
sections, 209
string coincidence, 266
Amerindian, 77, 83, 85, 87
Anglo-Saxon, 7
Arabic, 84
Aramaic, 84
Aranda or Arunta, 319-21
alternating direct exchange, 201,
209, 212, 225
conubium, 201-3
cross-second-cousin-marriage, 206,
208
equivalence-rules, 263, 266
kingraph, 203
patrilineal moieties, 207
section names and kinterms, 204
section system, 113, 214-6, 262
string coincidence, 266
Arapaho, 21
Aryan, 7, 85, 95
non-Aryan, 84, 95
Assiniboine
sibling pattern, 54

Bengali, 84-86, 95
Bulgarian, 84
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Burmese, 85
Byansi
Dravidian type, generation patterns,
100

Chinese, 85-6
bifurcate and non-merging, 129
Caddoan
sibling pattern, 54
Coast Yuki, 53
Comanche
generation-patterns, 96
equivalence-rules, 263
Crow
kingraph, 126
equivalence-rules, 263, 265
skewing rule, 124
string coincidence, 265
subtypes, 124, 126-8

Dieri
alternating direct exchange system,
201, 212
equivalence rules, 263, 266
kingraph and kinlist, 208
list of kinterms, 207
matrimoieties split, 215
section system, 262
Dravidian, 77, 84, 86
(infinite) group, 112, 108
system, 85, 108
type, 29, 77, 87, 97, 100

English
as language, 84
cousin pattern, 35, 63
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coverset, 30 100
coverset-recurrence, 39-40 German, 84
equivalence-rule, 38, 44, 46, 49, 71, Greek, 7, 84

263 Gujarati, 84-5, 95
final description, 51
generation and actual age, 211 Hawaiian, 82
gloss, 11 Hebrew, 84
gloss for JA, 58-9 Hellene, 7
kingraph, 41 Hindi, 84-6, 93, 95
kmhs‘t' 17 equivalence-rules, 263-4
kinship system, 14, 18, 23, 32-3 kingraph, 94
kinterm, 1, 11, 17, 49-50, 80, 107, Hindu, 227

115, 299, 300-1, 303 Hopi
eiRaTExsg. IRdien; equivalence-rules, 129, 263, 265
fonoid, 47-8 kingraph, 128
non-beurcat:e rule, 68, 77 semi-bifurcate system, 126
product chain, 36 string-coincidence, 265
reciprocal term, 26 subtype Crow I, 127
sibling partition, 251, 257, 259 Hungarian, 84

sibling pattern, 52, 248
speaker of, 206, 246

terminology, 5, 15, 279 Tatmul 210, 229, 230, 231, 233-4, 267
tracing-out, 41-2 connubium, 231-2
type and subtype, 29, 264 kingraph proposed by Korn, 235
unstable in partition, 37 kinlist, 232
Erse: old, 80 marriage rules, 236-7
Eskimo, 85, 262 Iroquois, 3, 85, 96
Estonian, 84 cousin pattern, 63, 77
Evenki, 85 type, 83, 87, 93, 96-7
defined, 91
i:)nx[jls;;’ 4 Italian, 84

Japanese, 85-6

Jinghpaw (Kachin)
connubial complexes, 267
kinterms and kingraph, 193-4

equivalence-rule, 44, 47, 263=4
kingraph, 116

kinlist, 116

monoid generating relations, 47
Omaha system, 53

sibling pattern, 54 Kanarese
string coincidence, 119, 264 Dravidian type, 84-5, 97
French, 80, 84 Karadjeri, 160-1, 169, 214-5, 220

connubium, 147-153
prescriptive grid, 148-9
Ganowanian, 77, 79, 83, 85, 116 permutation-group, 150
Garo kingraph, 150, 152
Dravidian type: generation pattern, kinlist, 150, 152
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generating relations, 165, 170
ZD-exchange, 171
steady indirect exchange, 201
type of prescribed marriage, 221
Karen, 85
Kariera
consists of two overt patrimoieties,
214-5
contrast with Tamil, 141-3
D-exchange, 171
Direct exchange (of wives), 147,
201
equivalence-rules, 139, 263, 265
establishment of proper kinterms, 2
four sectional relations, 131
generating relations, 221
grid for personal kinterms, 139-40
kingraph, 141-3
Klein group, 134-5, 320
marriage-cycle of two clans, 168
marriage rules, 132
multiplication-table, 135
personal kinterms, 143-5, 321
in Nyul-nyul language, 140,
142-3
in Kariera language, 146
personal relations, 139-46
property of mathematics, 268
sectional kingraphs, 135-6
sectional reduction, 137
section-system with four elements,
113
section tribes, 220
sister-exchange (marriage), 133,
153, 186
string coincidence, 265
tribe, moieties and clans, 21
type of prescribed marriage, 221
(2, 2)-space, 305, 312
Karok
term of decedence, 6
Kaw
Morgan’s fining, 119
Kokata, 262
rotating direct exchange, 216, 268

TRIBAL NAME INDEX

Elkin’s diagram, 217
kingraph, 218
kinterms, 219
generating relations, 220, 263, 266
string coincidence, 266
Komba
sibling pattern, 54
Korean
inch system, 276
Kuma
clan and subclan, 21=2, 232

Lebanese Christian, 84

Lower Burma
equivalence-rules, 263-4
generational system, 72
generation pattern, 73
grandkin pattern, 59, 72
kingraph, 73
non-bifurcate and merging, 77
string-coincidence, 264

Malayan, 83, 85-6

Manchurian, 85

Marathi, 84-5, 95

Mbuti
consanguineal kinterms, 95
equivalence-rules, 263-4
Iroquois cousin pattern, 63
kingraph, 96
sibling terminology, 54, 252, 255,

257

string-coincidence, 264

Moala
Dravidian type, generation pattern,

100

Murngin, 293, 305, 309
circular connubium, 163, 168-9
connubium, 185
controversy, 155-6
DD-exchange, 171
divisions, 220
galle-marriage, 14
generating relations, 170, 263, 265
generators x and y, 166
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generators y and w, 168 Nyul-nyul, 140, 207
kingraph
o om0 gy
g GRA) SE akie sibling pattern, 54, 249, 252
for (6, 4)-connubium, 165, Ojibwa
167, 169, 267 :
! ! Iroquois type, 3, 97
kinterms, 1-2, 49, 107, 158, 191 e P
I infinitel " Omaha, 115
app Le;’aﬁzsm,;;me y many other kingraph, 117
¢ ¢ ; (skewing) rule, 115, 124
choices between giver and subtype, 119, 123
. L ?
taker. kinterms, 171-4 system, 53, 120-2, 126
consanguineal and affinal, 14 type, 116, 129
determine the correct kinterm, AR, ?
191
fitness of terminology to Pawnee .
sections, 266 equivalence-rules, 263, 265
kinship terminology partitions, kingraph and kinlist, 125
5 string-coincidence, 265
prescriptive terminology, 15 Persia, 84
reciprocal term, 26 Piaroa
Warner's chart, 157, 159-60, Dravidian type, generation pattern,
181-2 . 100
written in the English, 10-1 Piro, 3
moieties, 23-4, 155 Dravidian system, 108
marriage (network), 185, 189 equivalence-rules, 263
named subsection, 162 21.03563 for saplc'?. %1-2
non-regular marriage, 164 kingraph and kinlist, 109
possible connubial complex, 190 Plains Miwok, 57
right marriage, 185-6 Polish, 84
set up connubia, 233 Pueblo, 127
(6, 4)-connubium, 165-7 Purum, 192=3, 195, 267-8
wrong marriage, 20
ZDD-exchange, 171, 184, 223 Russia, 84

Mongolian, 86
Seneca, 82, 85, 93, 95, 105

Nasioi affinal kinterms, 90
Dravidian type: generation pattern, bifurcate-merging, 77
100 classificatory system, 81
Nayar consanguineal kinlist, 89
establishment of paternity, 12-3 consanguineal kinterms, 89
Nepal consanguineal system, 90
equivalence-rules, 263 contrast between Seneca and
generation patterns, 96 Tamil, 99-100
Norwegian difference between Seneca and

bilexemic terms, 80 Tamil, 78
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equivalence-rules, 91, 263
glosses for JA, 58

identity of Seneca and Tamil, 79, 99

Iroquois type, 91, 97
kinclass, 93
kingraph, 91-2, 97
kinterm, 11-2, 14, 18, 83, 88
leading focus, 32
lower-case letter, 10
named matriclans, 21
reduction and expansion, 91
tracing-out affinal chains, 106-7
terminology, 15
Seneca-Iroquois, 3, 21, 59, 78
Serrano, 59
Shastan, 26-7
equivalence-rules, 263
generation-patterns, 96
Siriono, 193, 197, 267
Spanish, 84
Sudanese, 65
Sumba, 169
Eastern Sumba, 168, 189
Southeastern Wintu, 16
Southern Miwok
cousin terminology, 16, 123
equivalence-rules, 263, 265
kingraph, 120
string coincidence, 119, 265

Tamil, 3, 50

bilateral cross-cousin marriage,
100-1

cancellation in a group, 104

complete non-redundant set of
rules, 106

componential analysis, 243-6

coversets for G., chains, 58-9

Dravidian type, 29, 77, 84-5, 97

equivalence-rules, 44, 105-7, 263,
265

group, 106

Kariera and Tamil, 141-2

kingraph, 99, 108

kinlist, 98, 102

TRIBAL NAME INDEX

kinterms, 14
rule, 99
Seneca and Tamil, 78-9, 81, 83, 88,
95, 100, 113
string coincidence, 265
system, 142
Tamil-Telegu kingraph, 97
Taromak-Rukai, 53
as a group, 113
classificatory sister-marriage, 110
generating relations, 111, 263, 266
generational cousin pattern, 63
kingraph, 111=2
kinlist, 110
string coincidence, 266
Telegu
Dravidian type, 29, 84-5, 97
equivalence-rules, 263
kingraph, 99
kinlist, 98
Tolowa
cousin terms, 15
equivalence-rules, 263
generation-patterns, 96
Trobriand
equivalence-rules, 263, 265
kingraph, 127
string coincidence, 265
Tungus; Tungusian; Tungusic, §5-87
Turanian, 83-6
Turkic; Turkestan; Turkish; 84, 86
Twana
consanguineal kinlist, 74
cut-off and merging rules, 262
equivalence-rules, 263-4
generational system, 72
kinlist, 75
non-bifurcate and merging, 77
string=coincidence, 264
Tzeltal
equivalence-rules, 262-4
kingraph, 121
string coincidence, 264

Ugrian, 84
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Uralian, 83-4 Xingu Carib
Dravidian type; generation pattern,
100
Vao
alternating direct exchange, 201, REE
216, 225 we

connubium, 212-3 affinal kinlist, 68

generating relations, 213, 203, 206 consanguineal kingraph, 69
kingraph, 213 con%angumeal kinlist, §7
kinterms, 213, 215 equivalence-rules, 47, 68, 263-4
kinlist, 67

monoid, 47, 70-2
non-bifurcate and merging, 77
Wappo Indian, 54 string-coincidence, 264

Wintu, 16, 119, 123, 263, 268 two-generator monoid, 72

string coincidence, 266
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